A topological bifurcation in chaotic scattering is characterized by a sudden
change in the topology of the infinite set of unstable periodic orbits embedded
in the underlying chaotic invariant set. We uncover a scaling law for the
fractal dimension of the chaotic set for such a bifurcation. Our analysis and
numerical computations in both two- and three-degrees-of-freedom systems
suggest a striking feature associated with these subtle bifurcations: the
dimension typically exhibits a sharp, cusplike local minimum at the
bifurcation.Comment: 4 pages, 4 figures, Revte