research

Cusp-scaling behavior in fractal dimension of chaotic scattering

Abstract

A topological bifurcation in chaotic scattering is characterized by a sudden change in the topology of the infinite set of unstable periodic orbits embedded in the underlying chaotic invariant set. We uncover a scaling law for the fractal dimension of the chaotic set for such a bifurcation. Our analysis and numerical computations in both two- and three-degrees-of-freedom systems suggest a striking feature associated with these subtle bifurcations: the dimension typically exhibits a sharp, cusplike local minimum at the bifurcation.Comment: 4 pages, 4 figures, Revte

    Similar works

    Full text

    thumbnail-image

    Available Versions