16 research outputs found
Association of ankylosing spondylitis with cardiovascular disease: a bidirectional two-sample mendelian randomization study
BackgroundsCurrent observational investigations hint at a potential linkage between ankylosing spondylitis and cardiovascular wellness. However, the nature of this causality remains to be elucidated. Consequently, this study is designed to evaluate the causal interconnection between ankylosing spondylitis and cardiovascular-related conditions utilizing a bidirectional two-sample Mendelian Randomization (MR) methodology.MethodsIn this study, we conducted Mendelian randomization (MR) analyses using genome-wide association study (GWAS) data. The fixed-effects inverse variance weighted (IVW) model was used as the primary analysis method, and MR-Egger regression and the weighted median method were employed as supplementary approaches. Horizontal pleiotropy and heterogeneity were evaluated using various statistical tests, including MR-PRESSO global test, MR-Egger intercept, and Cochranâs Q test.ResultsThe MR result demonstrated an increased risk of heart failure in individuals with ankylosing spondylitis (OR: 1.0132, 95% CI = 1.0043-1.0221, p = 0.003). The MR analysis results did not demonstrate a causal relationship between ankylosing spondylitis and other cardiovascular diseases, such as atrial fibrillation, coronary artery disease, ischemic stroke, myocardial infarction, and valvular heart disease (all p > 0.05). No evidence of reverse causality was found between ankylosing spondylitis and mentioned cardiovascular diseases in reverse MR analyses. Sensitivity analysis verified the reliability of the results.ConclusionOur MR study indicates a relationship between ankylosing spondylitis and an increased risk of heart failure. Further research is needed to confirm these findings and elucidate the underlying mechanisms involved
Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (Pdiscovery = 0.01 and Pvalidation = 2.71Ă10-3). Further, potential functional DNA methylation-gene expression-overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk
SIPA1L3 methylation modifies the benefit of smoking cessation on lung adenocarcinoma survival: an epigenomic-smoking interaction analysis
Smoking cessation prolongs survival and decreases mortality of patients with nonâsmallâcell lung cancer (NSCLC). In addition, epigenetic alterations of some genes are associated with survival. However, potential interactions between smoking cessation and epigenetics have not been assessed. Here, we conducted an epigenomeâwide interaction analysis between DNA methylation and smoking cessation on NSCLC survival. We used a twoâstage study design to identify DNA methylation-smoking cessation interactions that affect overall survival for earlyâstage NSCLC. The discovery phase contained NSCLC patients from Harvard, Spain, Norway, and Sweden. A histologyâstratified Cox proportional hazards model adjusted for age, sex, clinical stage, and study center was used to test DNA methylation-smoking cessation interaction terms. Interactions with false discovery rateâq ⤠0.05 were further confirmed in a validation phase using The Cancer Genome Atlas database. Histologyâspecific interactions were identified by stratification analysis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. We identified one CpG probe (cg02268510SIPA1L3) that significantly and exclusively modified the effect of smoking cessation on survival in LUAD patients [hazard ratio (HR)interaction = 1.12; 95% confidence interval (CI): 1.07-1.16; P = 4.30 Ă 10-7]. Further, the effect of smoking cessation on earlyâstage LUAD survival varied across patients with different methylation levels of cg02268510SIPA1L3. Smoking cessation only benefited LUAD patients with low methylation (HR = 0.53; 95% CI: 0.34-0.82; P = 4.61 Ă 10-3) rather than medium or high methylation (HR = 1.21; 95% CI: 0.86-1.70; P = 0.266) of cg02268510SIPA1L3. Moreover, there was an antagonistic interaction between elevated methylation of cg02268510SIPA1L3 and smoking cessation (HRinteraction = 2.1835; 95% CI: 1.27-3.74; P = 4.46 Ă 10â3). In summary, smoking cessation benefited survival of LUAD patients with low methylation at cg02268510SIPA1L3. The results have implications for not only smoking cessation after diagnosis, but also possible methylationâspecific drug targeting
PAX9 polymorphism and susceptibility to sporadic non-syndromic severe anodontia: a case-control study in southwest China
Our research aimed to look into the clinical traits and genetic mutations in sporadic non-syndromic anodontia and to gain insight into the role of mutations of PAX9, MSX1, AXIN2 and EDA in anodontia phenotypes, especially for the PAX9. MATERIAL AND METHODS: The female proband and her family members from the ethnic Han families underwent complete oral examinations and received a retrospective review. Venous blood samples were obtained to screen variants in the PAX9, MSX1, AXIN2, and EDA genes. A case-control study was performed on 50 subjects with sporadic tooth agenesis (cases) and 100 healthy controls, which genotyped a PAX9 gene polymorphism (rs4904210). RESULTS: Intra-oral and panoramic radiographs revealed that the female proband had anodontia denoted by the complete absence of teeth in both the primary and secondary dentitions, while all her family members maintained normal dentitions. Detected in the female proband were variants of the PAX9 and AXIN2 including A240P (rs4904210) of the PAX9, c.148C>T (rs2240308), c.1365A>G (rs9915936) and c.1386C>T (rs1133683) of the AXIN2. The same variants were present in her unaffected younger brother. The PAX9 variations were in a different state in her parents. Mutations in the MSX1 and EDA genes were not identified. No significant diferences were found in the allele and genotype frequencies of the PAX9 polymorphism between the controls and the subjects with sporadic tooth agenesis. CONCLUSIONS: These results suggest that the association of A240P with sporadic tooth agenesis still remains obscure, especially for different populations. The genotype/phenotype correlation in congenital anodontia should be verified
PAX9 polymorphism and susceptibility to sporadic non-syndromic severe anodontia: a case-control study in southwest China
Our research aimed to look into the clinical traits and genetic mutations in sporadic non-syndromic anodontia and to gain insight into the role of mutations of PAX9, MSX1, AXIN2 and EDA in anodontia phenotypes, especially for the PAX9. Material and Methods The female proband and her family members from the ethnic Han families underwent complete oral examinations and received a retrospective review. Venous blood samples were obtained to screen variants in the PAX9, MSX1, AXIN2, and EDA genes. A case-control study was performed on 50 subjects with sporadic tooth agenesis (cases) and 100 healthy controls, which genotyped a PAX9 gene polymorphism (rs4904210). Results Intra-oral and panoramic radiographs revealed that the female proband had anodontia denoted by the complete absence of teeth in both the primary and secondary dentitions, while all her family members maintained normal dentitions. Detected in the female proband were variants of the PAX9 and AXIN2 including A240P (rs4904210) of the PAX9, c.148C>;T (rs2240308), c.1365A>;G (rs9915936) and c.1386C>;T (rs1133683) of the AXIN2. The same variants were present in her unaffected younger brother. The PAX9 variations were in a different state in her parents. Mutations in the MSX1 and EDA genes were not identified. No significant diferences were found in the allele and genotype frequencies of the PAX9 polymorphism between the controls and the subjects with sporadic tooth agenesis. Conclusions These results suggest that the association of A240P with sporadic tooth agenesis still remains obscure, especially for different populations. The genotype/phenotype correlation in congenital anodontia should be verified
Tailored synthesis of ZnâN co-doped porous MoC nanosheets towards efficient hydrogen evolution
Developing non-precious metal catalysts with both high efficiency and long-term stability is the top priority for hydrogen evolution reactions (HER). Herein, we present a facile two-step method to synthesize Zn, N co-doped molybdenum carbide nanosheets (Zn-N-MoC-H NSs) by using bi-metal oxides of ZnMoO4 as a unique precursor. Zn not only serves as a template to form a porous structure on MoC nanosheets during volatilizing at high temperatures, but also acts as a doping source for Zn doping in MoC. The N-containing carbon source realizes N doping of MoC. Benefitting from Zn, N co-doping and the porous nanosheet structure with a large electrochemical surface area, Zn-N-MoC-H NSs lead to enhanced HER activity in an acidic electrolyte (0.5 M H2SO4) with a low onset potential of -66 mV vs. RHE (1 mA cm-2), overpotential of 128 mV (10 mA cm-2), small Tafel slope of 52.1 mV dec-1 and persistent long-term stability. Density functional theory calculations reveal that Zn, N co-doping can synergistically weaken the strong Mo-H bonding, improve absorbed hydrogen atom (Hads) desorption and lead to faster HER kinetics. This study provides new insights into the use of Zn as a template and electronic regulator toward efficient catalysis and applications in energy storage and conversion
PAX9 polymorphism and susceptibility to sporadic non-syndromic severe anodontia: a case-control study in southwest China
Our research aimed to look into the clinical traits and genetic mutations in sporadic non-syndromic anodontia and to gain insight into the role of mutations of PAX9, MSX1, AXIN2 and EDA in anodontia phenotypes, especially for the PAX9. Material and Methods The female proband and her family members from the ethnic Han families underwent complete oral examinations and received a retrospective review. Venous blood samples were obtained to screen variants in the PAX9, MSX1, AXIN2, and EDA genes. A case-control study was performed on 50 subjects with sporadic tooth agenesis (cases) and 100 healthy controls, which genotyped a PAX9 gene polymorphism (rs4904210). Results Intra-oral and panoramic radiographs revealed that the female proband had anodontia denoted by the complete absence of teeth in both the primary and secondary dentitions, while all her family members maintained normal dentitions. Detected in the female proband were variants of the PAX9 and AXIN2 including A240P (rs4904210) of the PAX9, c.148C>T (rs2240308), c.1365A>G (rs9915936) and c.1386C>T (rs1133683) of the AXIN2. The same variants were present in her unaffected younger brother. The PAX9 variations were in a different state in her parents. Mutations in the MSX1 and EDA genes were not identified. No significant diferences were found in the allele and genotype frequencies of the PAX9 polymorphism between the controls and the subjects with sporadic tooth agenesis. Conclusions These results suggest that the association of A240P with sporadic tooth agenesis still remains obscure, especially for different populations. The genotype/phenotype correlation in congenital anodontia should be verified
Ultrathin Spinel Membrane-Encapsulated Layered Lithium-Rich Cathode Material for Advanced Li-Ion Batteries
Lack of high-performance cathode
materials has become a technological
bottleneck for the commercial development of advanced Li-ion batteries.
We have proposed a biomimetic design and versatile synthesis of ultrathin
spinel membrane-encapsulated layered lithium-rich cathode, a modification
by nanocoating. The ultrathin spinel membrane is attributed to the
superior high reversible capacity (over 290 mAh g<sup>â1</sup>), outstanding rate capability, and excellent cycling ability of
this cathode, and even the stubborn illnesses of the layered lithium-rich
cathode, such as voltage decay and thermal instability, are found
to be relieved as well. This cathode is feasible to construct high-energy
and high-power Li-ion batteries
Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3.
Two epigenetic pathways of transcriptional repression, DNA methylation and polycomb repressive complex 2 (PRC2), are known to regulate neuronal development and function. However, their respective contributions to brain maturation are unknown. We found that conditional loss of the de novo DNA methyltransferase Dnmt3a in mouse excitatory neurons altered expression of synapse-related genes, stunted synapse maturation, and impaired working memory and social interest. At the genomic level, loss of Dnmt3a abolished postnatal accumulation of CG and non-CG DNA methylation, leaving adult neurons with an unmethylated, fetal-like epigenomic pattern at ~222,000 genomic regions. The PRC2-associated histone modification, H3K27me3, increased at many of these sites. Our data support a dynamic interaction between two fundamental modes of epigenetic repression during postnatal maturation of excitatory neurons, which together confer robustness on neuronal regulation
EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC
Hypoxia occurs frequently in human cancers and promotes stabilization and activation of hypoxia inducible factor (HIF). HIF-1Îą is specific for the hypoxia response, and its degradation mediated by three enzymes EGLN1, EGLN2 and EGLN3. Although EGLNs expression has been found to be related to prognosis of many cancers, few studies examined DNA methylation in EGLNs and its relationship to prognosis of early-stage non-small cell lung cancer (NSCLC). We analyzed EGLNs DNA methylation data from tumor tissue samples of 1,230 early-stage NSCLC patients, as well as gene expression data from The Cancer Genome Atlas. The sliding windows sequential forward feature selection method and weighted random forest were used to screen out the candidate CpG probes in lung adenocarcinomas (LUAD) and lung squamous cell carcinomas patients, respectively, in both discovery and validation phases. Then Cox regression was performed to evaluate the association between DNA methylation and overall survival. Among the 34 CpG probes in EGLNs, DNA methylation at cg25923056EGLN2 was identified to be significantly associated with LUAD survival (HR = 1.02, 95% CI: 1.01â1.03, P = 9.90 Ă 10â5), and correlated with EGLN2 expression (r =â0.36, P = 1.52 Ă 10â11). Meanwhile, EGLN2 expression was negatively correlated with HIF1A expression in tumor tissues (r =â0.30, P = 4.78 Ă 10â8) and significantly (P = 0.037) interacted with HIF1A expression on overall survival. Therefore, DNA methylation of EGLN2- HIF1A is a potential marker for LUAD prognosis and these genes are potential treatment targets for further development of HIF-1Îą inhibitors in lung cancer therapy