187 research outputs found

    Short-term alterations in hippocampal glutamate transport system caused by one-single neonatal seizure episode: Implications on behavioral performance in adulthood

    Get PDF
    AbstractImpairment in the activity and expression of glutamate transporters has been found in experimental models of epilepsy in adult animals. However, there are few studies investigating alterations on glutamate transporters caused by epilepsy in newborn animals, especially in the early periods after seizures. In this study, alterations in the hippocampal glutamate transporters activity and immunocontent were investigated in neonatal rats (7 days old) submitted to kainate-induced seizures model. Glutamate uptake, glutamate transporters (GLT-1, GLAST, EAAC1) and glutamine synthetase (GS) were assessed in hippocampal slices obtained 12h, 24h, 48h, 72h and 60 days after seizures. Immunoreactivity for hippocampal GFAP, NeuN and DAPI were assessed 24h after seizure. Behavioral analysis (elevated-plus maze and inhibitory avoidance task) was also investigated in the adult animals (60 days old). The decrease on glutamate uptake was observed in hippocampal slices obtained 24h after seizures. The immunocontent of GLT-1 increased at 12h and decreased at 24h (+62% and −20%, respectively), while GLAST increased up to 48h after seizures. No alterations were observed for EAAC1 and GS. It should be mentioned that there were no long-term changes in tested glutamate transporters at 60 days after kainate treatment. GFAP immunoreactivity increased in all hippocampal subfields (CA1, CA3 and dentate gyrus) with no alterations in NeuN and DAPI staining. In the adulthood, kainate-treated rats showed anxiety-related behavior and lower performance in the inhibitory avoidance task. Our findings indicate that acute modifications on hippocampal glutamate transporters triggered by a single convulsive event in early life may play a role in the behavioral alterations observed in adulthood

    Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy

    Get PDF
    The transient response of bedrock rivers to a drop in base level can be used to discriminate between competing fluvial erosion models. However, some recent studies of bedrock erosion conclude that transient river long profiles can be approximately characterized by a transport‐limited erosion model, while other authors suggest that a detachment‐limited model best explains their field data. The difference is thought to be due to the relative volume of sediment being fluxed through the fluvial system. Using a pragmatic approach, we address this debate by testing the ability of end‐member fluvial erosion models to reproduce the well‐documented evolution of three catchments in the central Apennines (Italy) which have been perturbed to various extents by an independently constrained increase in relative uplift rate. The transport‐limited model is unable to account for the catchments’response to the increase in uplift rate, consistent with the observed low rates of sediment supply to the channels. Instead, a detachment‐limited model with a threshold corresponding to the field‐derived median grain size of the sediment plus a slope‐dependent channel width satisfactorily reproduces the overall convex long profiles along the studied rivers. Importantly, we find that the prefactor in the hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster the higher the uplift rate, consistent with field observations. We conclude that a slope‐ dependent channel width and an entrainment/erosion threshold are necessary ingredients when modeling landscape evolution or mapping the distribution of fluvial erosion rates in areas where the rate of sediment supply to channels is low

    New approaches to high-resolution mapping of marine vertical structures

    Get PDF
    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures

    Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide

    Get PDF
    During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent micelles, there is no atomic structure information in membranes. To answer this question, we performed bias-exchange metadynamics (BE-META) simulations, which showed that the lowest energy states of the membrane-inserted FP correspond to helical-hairpin conformations similar to that observed in micelles. BE-META simulations of the G1V, W14A, G12A/G13A and G4A/G8A/G16A/G20A mutants revealed that all the mutations affect the peptide's free energy landscape. A FRET-based analysis showed that all the mutants had a reduced fusogenic activity relative to the WT, in particular the mutants G12A/G13A and G4A/G8A/G16A/G20A. According to our results, one of the major causes of the lower activity of these mutants is their lower membrane affinity, which results in a lower concentration of peptide in the bilayer. These findings contribute to a better understanding of the influenza fusion process and open new routes for future studies

    Mammalian Target of Rapamycin Is a Therapeutic Target for Murine Ovarian Endometrioid Adenocarcinomas with Dysregulated Wnt/β-Catenin and PTEN

    Get PDF
    Despite the fact that epithelial ovarian cancers are the leading cause of death from gynecological cancer, very little is known about the pathophysiology of the disease. Mutations in the WNT and PI3K pathways are frequently observed in the human ovarian endometrioid adenocarcinomas (OEAs). However, the role of WNT/β-catenin and PTEN/AKT signaling in the etiology and/or progression of this disease is currently unclear. In this report we show that mice with a gain-of-function mutation in β-catenin that leads to dysregulated nuclear accumulation of β-catenin expression in the ovarian surface epithelium (OSE) cells develop indolent, undifferentiated tumors with both mesenchymal and epithelial characteristics. Combining dysregulated β-catenin with homozygous deletion of PTEN in the OSE resulted in development of significantly more aggressive tumors, which was correlated with inhibition of p53 expression and cellular senescence. Induced expression of both mTOR kinase, a master regulator of proliferation, and phosphorylation of its downstream target, S6Kinase was also observed in both the indolent and aggressive mouse tumors, as well as in human OEA with nuclear β-catenin accumulation. Ectopic allotransplants of the mouse ovarian tumor cells with a gain-of-function mutation in β-catenin and PTEN deletion developed into tumors with OEA histology, the growth of which were significantly inhibited by oral rapamycin treatment. These studies demonstrate that rapamycin might be an effective therapeutic for human ovarian endometrioid patients with dysregulated Wnt/β-catenin and Pten/PI3K signaling

    Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails

    Get PDF
    Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins

    Thyroid Disruption by Di-n-Butyl Phthalate (DBP) and Mono-n-Butyl Phthalate (MBP) in Xenopus laevis

    Get PDF
    BACKGROUND: Di-n-butyl phthalate (DBP), a chemical widely used in many consumer products, is estrogenic and capable of producing seriously reproductive and developmental effects in laboratory animals. However, recent in vitro studies have shown that DBP and mono-n-butyl phthalate (MBP), the major metabolite of DBP, possessed thyroid hormone receptor (TR) antagonist activity. It is therefore important to consider DBP and MBP that may interfere with thyroid hormone system. METHODOLOGY/PRINCIPAL FINDINGS: Nieuwkoop and Faber stage 51 Xenopus laevis were exposed to DBP and MBP (2, 10 or 15 mg/L) separately for 21 days. The two test chemicals decelerated spontaneous metamorphosis in X. laevis at concentrations of 10 and 15 mg/L. Moreover, MBP seemed to possess stronger activity. The effects of DBP and MBP on inducing changes of expression of selected thyroid hormone response genes: thyroid hormone receptor-beta (TRβ), retinoid X receptor gamma (RXRγ), alpha and beta subunits of thyroid-stimulating hormone (TSHα and TSHβ) were detected by qPCR at all concentrations of the compounds. Using mammalian two-hybrid assay in vitro, we found that DBP and MBP enhanced the interactions between co-repressor SMRT (silencing mediator for retinoid and thyroid hormone receptors) and TR in a dose-dependent manner, and MBP displayed more markedly. In addition, MBP at low concentrations (2 and 10 mg/L) caused aberrant methylation of TRβ in head tissue. CONCLUSIONS: The current findings highlight potential disruption of thyroid signalling by DBP and MBP and provide data for human risk assessment
    corecore