1,865 research outputs found
Braking the Gas in the beta Pictoris Disk
(Abridged) The main sequence star beta Pictoris hosts the best studied
circumstellar disk to date. Nonetheless, a long-standing puzzle has been around
since the detection of metallic gas in the disk: radiation pressure from the
star should blow the gas away, yet the observed motion is consistent with
Keplerian rotation. In this work we search for braking mechanisms that can
resolve this discrepancy. We find that all species affected by radiation force
are heavily ionized and dynamically coupled into a single fluid by Coulomb
collisions, reducing the radiation force on species feeling the strongest
acceleration. For a gas of solar composition, the resulting total radiation
force still exceeds gravity, while a gas of enhanced carbon abundance could be
self-braking. We also explore two other braking agents: collisions with dust
grains and neutral gas. Grains surrounding beta Pic are photoelectrically
charged to a positive electrostatic potential. If a significant fraction of the
grains are carbonaceous (10% in the midplane and larger at higher altitudes),
ions can be slowed down to satisfy the observed velocity constraints. For
neutral gas to brake the coupled ion fluid, we find the minimum required mass
to be 0.03 M_\earth, consistent with observed upper limits of the
hydrogen column density, and substantially reduced relative to previous
estimates. Our results favor a scenario in which metallic gas is generated by
grain evaporation in the disk, perhaps during grain-grain collisions. We
exclude a primordial origin for the gas, but cannot rule out the possibility of
its production by falling evaporating bodies near the star. We discuss the
implications of this work for observations of gas in other debris disks.Comment: 19 pages, 12 figures, emulateapj. Accepted for publication in Ap
Recommended from our members
A database and challenge for acoustic scene classification and event detection
Zero-Divisor Graphs, Commutative Rings of Quotients, and Boolean Algebras
The zero-divisor graph of a commutative ring is the graph whose vertices are the nonzero zero-divisors of the ring such that distinct vertices are adjacent if and only if their product is zero. We use this construction to study the interplay between ring-theoretic and graph-theoretic properties. Of particular interest are Boolean rings and commutative rings of quotients
Recommended from our members
Detection and classification of acoustic scenes and events: an IEEE AASP challenge
Orbital characterization of the \beta Pictoris b giant planet
In June 2010, we confirmed the existence of a giant planet in the disk of the
young star Beta Pictoris, located between 8 AU and 15 AU from the star. This
young planet offers the rare opportunity to monitor a large fraction of the
orbit using the imaging technique over a reasonably short timescale. Using the
NAOS-CONICA adaptive-optics instrument (NACO) at the Very Large Telescope
(VLT), we obtained repeated follow-up images of the Bpic system in the Ks and
L' filters at four new epochs in 2010 and 2011. Complementing these data with
previous measurements, we conduct a homogeneous analysis, which covers more
than eight yrs, to accurately monitor the Bpic b position relative to the star.
On the basis of the evolution of the planet's relative position with time, we
derive the best-fit orbital solutions for our measurements. More reliable
results are found with a Markov-chain Monte Carlo approach. The solutions favor
a low-eccentricity orbit e < 0.17, with semi-major axis in the range 8--9 AU
corresponding to orbital periods of 17--21 yrs. Our solutions favor a highly
inclined solution with a peak around i=88.5+-1.7 deg, and a longitude of
ascending node tightly constrained at Omega = -147.5+-1.5 deg. These results
indicate that the orbital plane of the planet is likely to be above the
midplane of the main disk, and compatible with the warp component of the disk
being tilted between 3.5 deg and 4.0 deg. This suggests that the planet plays a
key role in the origin of the inner warped-disk morphology of the Bpic disk.
Finally, these orbital parameters are consistent with the hypothesis that the
planet is responsible for the transit-like event observed in November 1981, and
also linked to the cometary activity observed in the Bpic system.Comment: 10 pages, 12 figures, accepted to A&
Constraining the orbit of the possible companion to Beta Pictoris: New deep imaging observations
We recently reported on the detection of a possible planetary-mass companion
to Beta Pictoris at a projected separation of 8 AU from the star, using data
taken in November 2003 with NaCo, the adaptive-optics system installed on the
Very Large Telescope UT4. Eventhough no second epoch detection was available,
there are strong arguments to favor a gravitationally bound companion rather
than a background object. If confirmed and located at a physical separation of
8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be
the closest planet to its star ever imaged, could be formed via core-accretion,
and could explain the main morphological and dynamical properties of the dust
disk. Our goal was to return to Beta Pic five years later to obtain a
second-epoch observation of the companion or, in case of a non-detection,
constrain its orbit. Deep adaptive-optics L'-band direct images of Beta Pic and
Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with
NaCo in January and February 2009. We also use 4QPM data taken in November
2004. No point-like signal with the brightness of the companion candidate
(apparent magnitudes L'=11.2 or Ks ~ 12.5) is detected at projected distances
down to 6.5 AU from the star in the 2009 data. As expected, the non-detection
does not allow to rule out a background object; however, we show that it is
consistent with the orbital motion of a bound companion that got closer to the
star since first observed in 2003 and that is just emerging from behind the
star at the present epoch. We place strong constraints on the possible orbits
of the companion and discuss future observing prospects.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Astronomy
and Astrophysic
Sparse aperture masking at the VLT II. Detection limits for the eight debris disks stars Pic, AU Mic, 49 Cet, Tel, Fomalhaut, g Lup, HD181327 and HR8799
Context. The formation of planetary systems is a common, yet complex
mechanism. Numerous stars have been identified to possess a debris disk, a
proto-planetary disk or a planetary system. The understanding of such formation
process requires the study of debris disks. These targets are substantial and
particularly suitable for optical and infrared observations. Sparse Aperture
masking (SAM) is a high angular resolution technique strongly contributing to
probe the region from 30 to 200 mas around the stars. This area is usually
unreachable with classical imaging, and the technique also remains highly
competitive compared to vortex coronagraphy. Aims. We aim to study debris disks
with aperture masking to probe the close environment of the stars. Our goal is
either to find low mass companions, or to set detection limits. Methods. We
observed eight stars presenting debris disks ( Pictoris, AU
Microscopii, 49 Ceti, Telescopii, Fomalhaut, g Lupi, HD181327 and
HR8799) with SAM technique on the NaCo instrument at the VLT. Results. No close
companions were detected using closure phase information under 0.5 of
separation from the parent stars. We obtained magnitude detection limits that
we converted to Jupiter masses detection limits using theoretical isochrones
from evolutionary models. Conclusions. We derived upper mass limits on the
presence of companions in the area of few times the diffraction limit of the
telescope around each target star.Comment: 7 pages, All magnitude detection limits maps are only available in
electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5
A library of near-infrared integral field spectra of young M-L dwarfs
We present a library of near-infrared (1.1-2.45 microns) medium-resolution
(R~1500-2000) integral field spectra of 15 young M6-L0 dwarfs, composed of
companions with known ages and of isolated objects. We use it to (re)derive the
NIR spectral types, luminosities and physical parameters of the targets, and to
test (BT-SETTL, DRIFT-PHOENIX) atmospheric models. We derive infrared spectral
types L0+-1, L0+-1, M9.5+-0.5, M9.5+-0.5, M9.25+-0.25, M8+0.5-0.75, and
M8.5+-0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B,
DH Tau B, CT Cha b, and HR7329B, respectively. BT-SETTL and DRIFT-PHOENIX
models yield close Teff and log g estimates for each sources. The models seem
to evidence a 600-300+600 K drop of the effective temperature at the M-L
transition. Assuming the former temperatures are correct, we derive new mass
estimates which confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4,
OTS 44, and Cha1109 lay inside or at the boundary of the planetary mass range.
We combine the empirical luminosities of the M9.5-L0 sources to the Teff to
derive semi-empirical radii estimates that do not match "hot-start"
evolutionary models predictions at 1-3 Myr. We use complementary data to
demonstrate that atmospheric models are able to reproduce the combined optical
and infrared spectral energy distribution, together with the near-infrared
spectra of these sources simultaneously. But the models still fail to represent
the dominant features in the optical. This issue casts doubts on the ability of
these models to predict correct effective temperatures from near-infrared
spectra alone. We advocate the use of photometric and spectroscopic data
covering a broad range of wavelengths to study the properties of very low mass
young companions to be detected with the planet imagers (Subaru/SCExAO,
LBT/LMIRCam, Gemini/GPI, VLT/SPHERE).Comment: 27 pages, 14 tables, 19 figures, accepted for publication in
Astronomy & Astrophysic
- …