11 research outputs found

    The effect of gas accretion on the radial gas metallicity profile of simulated galaxies

    Get PDF
    We study the effect of the gas accretion rate (M˙ accr) on the radial gas metallicity profile (RMP) of galaxies using the EAGLE cosmological hydrodynamic simulations, focusing on central galaxies of stellar mass M 109 M at z ≀ 1. We find clear relations between M˙ accr and the slope of the RMP (measured within an effective radius), where higher M˙ accr are associated with more negative slopes. The slope of the RMPs depends more strongly on M˙ accr than on stellar mass, star formation rate (SFR), or gas fraction, suggesting M˙ accr to be a more fundamental driver of the RMP slope of galaxies. We find that eliminating the dependence on stellar mass is essential for pinning down the properties that shape the slope of the RMP. Although M˙ accr is the main property modulating the slope of the RMP, we find that it causes other correlations that are more easily testable observationally: At fixed stellar mass, galaxies with more negative RMP slopes tend to have higher gas fractions and SFRs, while galaxies with lower gas fractions and SFRs tend to have flatter metallicity profiles within an effective radius.Fil: Collacchioni, Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: Lagos, Claudia D.P.. University of Western Australia; Australia. Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions; Australia. Universidad de Copenhagen; DinamarcaFil: Mitchell, Peter D.. Leiden University; PaĂ­ses Bajos. UniversitĂ© Claude Bernard Lyon 1; FranciaFil: Schaye, Joop. Leiden University; PaĂ­ses BajosFil: Wisnioski, Emily. Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions; Australia. Australian National University. Research School of Astronomy and Astrophysics; AustraliaFil: Cora, Sofia Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: Correa, Camila A.. Leiden University; PaĂ­ses Bajo

    A unified multiwavelength model of galaxy formation

    Get PDF
    We present a new version of the GALFORM semi-analytical model of galaxy formation. This brings together several previous developments of GALFORM into a single unified model, including a different initial mass function (IMF) in quiescent star formation and in starbursts, feedback from active galactic nuclei supressing gas cooling in massive halos, and a new empirical star formation law in galaxy disks based on their molecular gas content. In addition, we have updated the cosmology, introduced a more accurate treatment of dynamical friction acting on satellite galaxies, and updated the stellar population model. The new model is able to simultaneously explain both the observed evolution of the K-band luminosity function and stellar mass function, and the number counts and redshift distribution of sub-mm galaxies selected at 850ÎŒm. This was not previously achieved by a single physical model within the ΛCDM framework, but requires having an IMF in starbursts that is somewhat top-heavy. The new model is tested against a wide variety of observational data covering wavelengths from the far-UV to sub-mm, and redshifts from z = 0 to z = 6, and is found to be generally successful. These observations include the optical and near-IR luminosity functions, HI mass function, fraction of early type galaxies, Tully-Fisher, metallicity-luminosity and size-luminosity relations at z = 0, as well as far-IR number counts, and far-UV luminosity functions at z ∌ 3 − 6. Discrepancies are however found in galaxy sizes and metallicities at low luminosities, and in the abundance of low mass galaxies at high-z, suggesting the need for a more sophisticated model of supernova feedback

    Baryon effects on void statistics in the EAGLE simulation

    Get PDF
    Cosmic voids are promising tools for cosmological tests due to their sensitivity to dark energy, modified gravity and alternative cosmological scenarios. Most previous studies in the literature of void properties use cosmological N-body simulations of dark matter (DM) particles that ignore the potential effect of baryonic physics. Using a spherical underdensity finder, we analyse voids using the mass field and subhalo tracers in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations, which follow the evolution of galaxies in a Λ cold dark matter universe with state-of-the-art subgrid models for baryonic processes in a (100 cMpc)3 volume. We study the effect of baryons on void statistics by comparing results with DM-only simulations that use the same initial conditions as EAGLE. When identifying voids in the mass field, we find that a DM-only simulation produces 24 per cent more voids than a hydrodynamical one due to the action of galaxy feedback polluting void regions with hot gas, specially for small voids with rvoid ≀ 10 Mpc. We find that the way in which galaxy tracers are selected has a strong impact on the inferred void properties. Voids identified using galaxies selected by their stellar mass are larger and have cuspier density profiles than those identified by galaxies selected by their total mass. Overall, baryons have minimal effects on void statistics, as void properties are well captured by DM-only simulations, but it is important to account for how galaxies populate DM haloes to estimate the observational effect of different cosmological models on the statistics of voids

    Ring galaxies in the EAGLE hydrodynamical simulations

    Get PDF
    We study the formation and evolution of ring galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations. We use the largest reference model Ref-L100N1504, a cubic cosmological volume of 100 cMpc on a side, to identify and characterize these systems through cosmic time. The number density of ring galaxies in EAGLE is in broad agreement with the observations. The vast majority of ring galaxies identified in EAGLE (83 per cent) have an interaction origin, i.e. form when one or more companion galaxies drop-through a disc galaxy. The remainder (17 per cent) have very long-lived ring morphologies (>2 Gyr) and host strong bars. Ring galaxies are HI-rich galaxies, yet display inefficient star formation activity and tend to reside in the green valley particularly at z 0.5. This inefficiency is mainly due to the low pressure and metallicity of their interstellar medium (ISM) compared with the ISM of similar star-forming galaxies. We find that the interaction(s) is responsible for decreasing the ISM pressure by causing the ISM gas to flow from the inner regions to the outer disc, where the ring feature forms. At a fixed radius, the star formation efficiency of ring galaxies is indistinguishable from their star-forming counterparts, and thus the main reason for their integrated lower efficiency is the different gas surface density profiles. Since galaxy morphologies are not used to tune the parameters in hydrodynamical simulations, the experiment performed here demonstrates the success of the current numerical models in EAGLE

    The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE

    Get PDF
    We investigate the connection between the morphology and internal kinematics of the stellar component of central galaxies with mass M⋆ > 109.5 M⊙ in the EAGLE simulations. We compare several kinematic diagnostics commonly used to describe simulated galaxies, and find good consistency between them. We model the structure of galaxies as ellipsoids and quantify their morphology via the ratios of their principal axes. We show that the differentiation of blue star-forming and red quiescent galaxies using morphological diagnostics can be achieved with similar efficacy to the use of kinematical diagnostics, but only if one is able to measure both the flattening and the triaxiality of the galaxy. Flattened oblate galaxies exhibit greater rotational support than their spheroidal counterparts, but there is significant scatter in the relationship between morphological and kinematical diagnostics, such that kinematically-similar galaxies can exhibit a broad range of morphologies. The scatter in the relationship between the flattening and the ratio of the rotation and dispersion velocities (v/σ) correlates strongly with the anisotropy of the stellar velocity dispersion: at fixed v/σ, flatter galaxies exhibit greater dispersion in the plane defined by the intermediate and major axes than along the minor axis, indicating that the morphology of simulated galaxies is influenced significantly by the structure of their velocity dispersion. The simulations reveal that this anisotropy correlates with the intrinsic morphology of the galaxy’s inner dark matter halo, i.e. the halo’s morphology that emerges in the absence of dissipative baryonic physics. This implies the existence of a causal relationship between the morphologies of galaxies and that of their host dark matter haloes

    Status of Women in Astronomy: A need for advancing inclusivity and equal opportunities

    No full text
    International audienceWomen in the Astronomy and STEM fields face systemic inequalities throughout their careers. Raising awareness, supported by detailed statistical data, represents the initial step toward closely monitoring hurdles in career progress and addressing underlying barriers to workplace equality. This, in turn, contributes to rectifying gender imbalances in STEM careers. The International Astronomical Union Women in Astronomy (IAU WiA) working group, a part of the IAU Executive Committee, is dedicated to increasing awareness of the status of women in Astronomy and supporting the aspirations of female astronomers globally. Its mission includes taking concrete actions to advance equal opportunities for both women and men in the field of astronomy. In August 2021, the IAU WiA Working Group established a new organizing committee, unveiling a comprehensive four-point plan. This plan aims to strengthen various aspects of the group's mission, encompassing: (i) Awareness Sustainability: Achieved through surveys and data collection, (ii) Training and Skill Building: Focused on professional development, (iii) Fundraising: To support key initiatives, and (iv) Communication: Dissemination of results through conferences, WG Magazines, newsletters, and more. This publication provides an overview of focused surveys that illuminate the factors influencing the careers of women in Astronomy, with a particular focus on the careers of mothers. It highlights the lack of inclusive policies, equal opportunities, and funding support for women researchers in the field. Finally, we summarize the specific initiatives undertaken by the IAU WiA Working Group to advance inclusivity and equal opportunities in Astronomy

    Status of Women in Astronomy: A need for advancing inclusivity and equal opportunities

    No full text
    International audienceWomen in the Astronomy and STEM fields face systemic inequalities throughout their careers. Raising awareness, supported by detailed statistical data, represents the initial step toward closely monitoring hurdles in career progress and addressing underlying barriers to workplace equality. This, in turn, contributes to rectifying gender imbalances in STEM careers. The International Astronomical Union Women in Astronomy (IAU WiA) working group, a part of the IAU Executive Committee, is dedicated to increasing awareness of the status of women in Astronomy and supporting the aspirations of female astronomers globally. Its mission includes taking concrete actions to advance equal opportunities for both women and men in the field of astronomy. In August 2021, the IAU WiA Working Group established a new organizing committee, unveiling a comprehensive four-point plan. This plan aims to strengthen various aspects of the group's mission, encompassing: (i) Awareness Sustainability: Achieved through surveys and data collection, (ii) Training and Skill Building: Focused on professional development, (iii) Fundraising: To support key initiatives, and (iv) Communication: Dissemination of results through conferences, WG Magazines, newsletters, and more. This publication provides an overview of focused surveys that illuminate the factors influencing the careers of women in Astronomy, with a particular focus on the careers of mothers. It highlights the lack of inclusive policies, equal opportunities, and funding support for women researchers in the field. Finally, we summarize the specific initiatives undertaken by the IAU WiA Working Group to advance inclusivity and equal opportunities in Astronomy

    Status of Women in Astronomy: A need for advancing inclusivity and equal opportunities

    No full text
    International audienceWomen in the Astronomy and STEM fields face systemic inequalities throughout their careers. Raising awareness, supported by detailed statistical data, represents the initial step toward closely monitoring hurdles in career progress and addressing underlying barriers to workplace equality. This, in turn, contributes to rectifying gender imbalances in STEM careers. The International Astronomical Union Women in Astronomy (IAU WiA) working group, a part of the IAU Executive Committee, is dedicated to increasing awareness of the status of women in Astronomy and supporting the aspirations of female astronomers globally. Its mission includes taking concrete actions to advance equal opportunities for both women and men in the field of astronomy. In August 2021, the IAU WiA Working Group established a new organizing committee, unveiling a comprehensive four-point plan. This plan aims to strengthen various aspects of the group's mission, encompassing: (i) Awareness Sustainability: Achieved through surveys and data collection, (ii) Training and Skill Building: Focused on professional development, (iii) Fundraising: To support key initiatives, and (iv) Communication: Dissemination of results through conferences, WG Magazines, newsletters, and more. This publication provides an overview of focused surveys that illuminate the factors influencing the careers of women in Astronomy, with a particular focus on the careers of mothers. It highlights the lack of inclusive policies, equal opportunities, and funding support for women researchers in the field. Finally, we summarize the specific initiatives undertaken by the IAU WiA Working Group to advance inclusivity and equal opportunities in Astronomy

    The SAMI Galaxy Survey: comparing 3D spectroscopic observations with galaxies from cosmological hydrodynamical simulations

    No full text
    International audienceCosmological hydrodynamical simulations are rich tools to understand the build-up of stellar mass and angular momentum in galaxies, but require some level of calibration to observations. We compare predictions at |zz| ∌ 0 from the eagle, hydrangea, horizon-agn, and magneticum simulations with integral field spectroscopic (IFS) data from the SAMI (Sydney-AAO Multi-object Integral field spectrograph) Galaxy Survey, ATLAS^3D, CALIFA (Calar Alto Legacy Integral Field Area), and MASSIVE surveys. The main goal of this work is to simultaneously compare structural, dynamical, and stellar population measurements in order to identify key areas of success and tension. We have taken great care to ensure that our simulated measurement methods match the observational methods as closely as possible, and we construct samples that match the observed stellar mass distribution for the combined IFS sample. We find that the eagle and hydrangea simulations reproduce many galaxy relations but with some offsets at high stellar masses. There are moderate mismatches in R_e (+), Δ (−), σ_e (−), and mean stellar age (+), where a plus sign indicates that quantities are too high on average, and minus sign too low. The horizon-agn simulations qualitatively reproduce several galaxy relations, but there are a number of properties where we find a quantitative offset to observations. Massive galaxies are better matched to observations than galaxies at low and intermediate masses. Overall, we find mismatches in R_e (+), Δ (−), σ_e (−), and (V/σ)_e (−). magneticum matches observations well: this is the only simulation where we find ellipticities typical for disc galaxies, but there are moderate differences in σ_e (−), (V/σ)_e (−), and mean stellar age (+). Our comparison between simulations and observational data has highlighted several areas for improvement, such as the need for improved modelling resulting in a better vertical disc structure, yet our results demonstrate the vast improvement of cosmological simulations in recent years
    corecore