54 research outputs found

    Blastic plasmacytoid dendritic cell neoplasm: Genomics mark epigenetic dysregulation as a primary therapeutic target

    Get PDF
    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective B therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined (P<0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5’-azacytidine and decitabine in controlling disease progression in vivo

    SNPs array karyotyping reveals a novel recurrent 20p13 amplification in primary myelofibrosis.

    Get PDF
    The molecular pathogenesis of primary mielofibrosis (PMF) is still largely unknown. Recently, single-nucleotide polymorphism arrays (SNP-A) allowed for genome-wide profiling of copy-number alterations and acquired uniparental disomy (aUPD) at high-resolution. In this study we analyzed 20 PMF patients using the Genome-Wide Human SNP Array 6.0 in order to identify novel recurrent genomic abnormalities. We observed a complex karyotype in all cases, detecting all the previously reported lesions (del(5q), del(20q), del(13q), +8, aUPD at 9p24 and abnormalities on chromosome 1). In addition, we identified several novel cryptic lesions. In particular, we found a recurrent alteration involving cytoband 20p13 in 55% of patients. We defined a minimal affected region (MAR), an amplification of 9,911 base-pair (bp) overlapping the SIRPB1 gene locus. Noteworthy, by extending the analysis to the adjacent areas, the cytoband was overall affected in 95% of cases. Remarkably, these results were confirmed by real-time PCR and validated in silico in a large independent series of myeloproliferative diseases. Finally, by immunohistochemistry we found that SIRPB1 was over-expressed in the bone marrow of PMF patients carrying 20p13 amplification. In conclusion, we identified a novel highly recurrent genomic lesion in PMF patients, which definitely warrant further functional and clinical characterization

    Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas

    Get PDF
    Burkitt lymphoma (BL) is an aggressive neoplasm characterized by consistent morphology and phenotype, typical clinical behavior and distinctive molecular profile. The latter is mostly driven by the MYC over-expression associated with the characteristic translocation (8;14) (q24; q32) or with variant lesions. Additional genetic events can contribute to Burkitt Lymphoma pathobiology and retain clinical significance. A pathogenetic role for Epstein-Barr virus infection in Burkitt lymphomagenesis has been suggested; however, the exact function of the virus is largely unknown.In this study, we investigated the molecular profiles (genes and microRNAs) of Epstein-Barr virus-positive and -negative BL, to identify specific patterns relying on the differential expression and role of Epstein-Barr virus-encoded microRNAs.First, we found significant differences in the expression of viral microRNAs and in selected target genes. Among others, we identified LIN28B, CGNL1, GCET2, MRAS, PLCD4, SEL1L, SXX1, and the tyrosine kinases encoding STK10/STK33, all provided with potential pathogenetic significance. GCET2, also validated by immunohistochemistry, appeared to be a useful marker for distinguishing EBV-positive and EBV-negative cases. Further, we provided solid evidences that the EBV-encoded microRNAs (e.g. BART6) significantly mold the transcriptional landscape of Burkitt Lymphoma clones.In conclusion, our data indicated significant differences in the transcriptional profiles of EBV-positive and EBV-negative BL and highlight the role of virus encoded miRNA

    Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma not otherwise specified

    Get PDF
    Peripheral T-cell lymphomas not otherwise specified (PTCLs/NOS) are rare and aggressive tumours whose molecular pathogenesis and diagnosis are still challenging. The microRNA (miRNA) profile of 23 PTCLs/NOS was generated and compared with that of normal T-lymphocytes (CD4+, CD8+, naive, activated). The differentially expressed miRNA signature was compared with the gene expression profile (GEP) of the same neoplasms. The obtained gene patterns were tested in an independent cohort of PTCLs/NOS. The miRNA profile of PTCLs/NOS then was compared with that of 10 angioimmunoblastic T-cell lymphomas (AITLs), 6 anaplastic large-cell lymphomas (ALCLs)/ALK+ and 6 ALCLs/ALK - . Differentially expressed miRNAs were validated in an independent set of 20 PTCLs/NOS, 20 AITLs, 19 ALCLs/ALK - and 15 ALCLs/ALK+. Two hundred and thirty-six miRNAs were found to differentiate PTCLs/NOS from activated T-lymphocytes. To assess which miRNAs impacted on GEP, a multistep analysis was performed, which identified all miRNAs inversely correlated to different potential target genes. One of the most discriminant miRNAs was selected and its expression was found to affect the global GEP of the tumours. Moreover, two sets of miRNAs were identified distinguishing PTCL/NOS from AITL and ALCL/ALK - , respectively. The diagnostic accuracy of this tool was very high (83.54%) and its prognostic value validated

    Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study

    Get PDF
    PURPOSE: The differential diagnosis among the commonest peripheral T-cell lymphomas (PTCLs; ie, PTCL not otherwise specified [NOS], angioimmunoblastic T-cell lymphoma [AITL], and anaplastic large-cell lymphoma [ALCL]) is difficult, with the morphologic and phenotypic features largely overlapping. We performed a phase III diagnostic accuracy study to test the ability of gene expression profiles (GEPs; index test) to identify PTCL subtype. METHODS: We studied 244 PTCLs, including 158 PTCLs NOS, 63 AITLs, and 23 ALK-negative ALCLs. The GEP-based classification method was established on a support vector machine algorithm, and the reference standard was an expert pathologic diagnosis according to WHO classification. RESULTS: First, we identified molecular signatures (molecular classifier [MC]) discriminating either AITL and ALK-negative ALCL from PTCL NOS in a training set. Of note, the MC was developed in formalin-fixed paraffin-embedded (FFPE) samples and validated in both FFPE and frozen tissues. Second, we found that the overall accuracy of the MC was remarkable: 98% to 77% for AITL and 98% to 93% for ALK-negative ALCL in test and validation sets of patient cases, respectively. Furthermore, we found that the MC significantly improved the prognostic stratification of patients with PTCL. Particularly, it enhanced the distinction of ALK-negative ALCL from PTCL NOS, especially from some CD30+ PTCL NOS with uncertain morphology. Finally, MC discriminated some T-follicular helper (Tfh) PTCL NOS from AITL, providing further evidence that a group of PTCLs NOS shares a Tfh derivation with but is distinct from AITL. CONCLUSION: Our findings support the usage of an MC as additional tool in the diagnostic workup of nodal PTCL

    Blastic plasmacytoid dendritic cell neoplasm: genomics mark epigenetic dysregulation as a primary therapeutic target

    Get PDF
    Blastic Plasmacytoid Dendritic Cell Neoplasm is a rare and aggressive hematological malignancy currently lacking an effective therapy. To possibly identify genetic alterations useful for a new treatment design, we analyzed by whole-exome sequencing fourteen Blastic Plasmacytoid Dendritic Cell Neoplasm patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program as the most significantly undermined (P<.0001). In particular, twenty-five epigenetic-modifiers were found mutated (e.g., ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and Pathology tissue-chromatin immunoprecipitation sequencing experiments; the patients displayed enrichment in gene-signatures regulated by methylation and modifiable by Decitabine administration, shared common H3K27-acetylated regions and featured a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical Blastic Plasmacytoid Dendritic Cell Neoplasm mouse model, established by the CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5'-Azacytidine and Decitabine in controlling the disease progression in vivo

    Bioactivity of POPs and their effects in mosquitofish in Sydney Olympic Park, Australia

    No full text
    The site of the 2000 Olympic Games (Sydney Olympic Park (SOP), Sydney, Australia) was contaminated by persistent organic pollutants (POPs) prior to remediation in the 1990s. This study investigates the bioactivity of POPs in the sediment and water of wetlands across SOP by in vitro 2,3,7,8-TCDD equivalence (TCDDeq) measurement (H4IIE cell line bioassay). Further, it examines whether disturbance of these sediments is likely to mobilise ligands for this receptor into the water column. Exposure to aryl hydrocarbon receptor (AhR) ligandswas measured in vivo using hepatic cytochrome P4501A (CYP1A) induction (EROD) in the mosquitofish (Gambusia holbrooki). Aqueous TCDDeq ranged from 0.013 to 0.057 pM in SOP wetlands which was significantly (pb0.05) less that in urban reference sites. These concentrations were not correlated to physical or chemical characteristics of the wetlands. In the sediments, TCDDeq ranged from 0.0016 to 7.06 µg/kg and these were not significantly (p=0.05) different to that measured in urban reference sites. Simulated disturbance of small quantities of sediment inwater samples significantly (pb0.05) increased the levels of TCDDeq measured in the water. Sediment TCDDeq was correlated to sediment SPAH concentration in 2006 and sediment SPCB, SDDT concentrations and fine sediment grain size in 2005. While fish at one SOP wetland had hepatic EROD activity elevated above the estimated basal level for this species, these were at the lower end of the range measured in urban impacted, non-remediated wetlands. EROD activitywas positively correlated with both the sediment SPCB load and aqueous TCDDeq. Increased catchment size was correlated with increased EROD activity suggesting an even spread of POPs throughout the residential areas of the Sydney metropolitan area. The concentration of bioactive POPs in the wetlands of SOP is therefore low relative to urban reference sites demonstrating the ongoing success of the remediation program
    • …
    corecore