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Abstract  

 

Blastic Plasmacytoid Dendritic Cell Neoplasm is a rare and aggressive hematological 

malignancy currently lacking an effective therapy. To possibly identify genetic alterations 

useful for a new treatment design, we analyzed by whole-exome sequencing fourteen Blastic 

Plasmacytoid Dendritic Cell Neoplasm patients and the patient-derived CAL-1 cell line. The 

functional enrichment analysis of mutational data reported the epigenetic regulatory program 

as the most significantly undermined (P<.0001). In particular, twenty-five epigenetic-

modifiers were found mutated (e.g., ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 

was the most frequently affected (28.6% of cases). To evaluate the impact of the identified 

epigenetic mutations at the gene-expression and Histone H3 lysine 27 

trimethylation/acetylation levels, we performed additional RNA and Pathology tissue-

chromatin immunoprecipitation sequencing experiments; the patients displayed enrichment in 

gene-signatures regulated by methylation and modifiable by Decitabine administration, shared 

common H3K27-acetylated regions and featured a set of cell-cycle genes aberrantly up-

regulated and marked by promoter acetylation. Collectively, the integration of sequencing 

data showed the potential of a therapy based on epigenetic agents. Through the adoption of a 

preclinical Blastic Plasmacytoid Dendritic Cell Neoplasm mouse model, established by the 

CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the 

epigenetic drugs 5’-Azacytidine and Decitabine in controlling the disease progression in vivo.  

 

Keywords: BPDCN, 5’-Azacytidine, Decitabine, whole-exome sequencing 
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Introduction 

 

Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) is a rare malignancy, deriving from 

precursors of plasmacytoid dendritic cells.1-4 It has no clear-cut racial or ethnic predisposition 

and more often affects elderly males (M/F=3.3:1; mean/median age at diagnosis: 61-67 

years). Despite BPDCN patients usually respond to first-line chemotherapy, they almost 

invariably relapse and display a dismal prognosis with a median overall survival (OS) ranging 

from 10 to 19 months.2 No standardized therapeutic approach has been so far established for 

BPDCN, even if hematopoietic stem cell transplantation has been shown to achieve remission 

in selected patients.5-6 Therefore, the development of effective treatments still represents an 

unmet need.7 The pathobiology of BPDCN is poorly understood and the number of reports 

exploring its molecular features is still limited.8-21 In the last few years, recent advances in the 

understanding of BPDCN molecular landscape paved the way for novel treatment approaches 

based on the inhibition of the BCL2 protein22, the activation of the cholesterol efflux23, the 

repression of the Bromodomain-containing protein 4 (BRD4)24, and the binding to the 

interleukin-3 receptor (IL3R).25All these potential therapeutic options, which are worth being 

further evaluated, mainly emerge from the analysis of the BPDCN transcriptome or from its 

antigenic repertoire. The genomic landscape of BPDCN has been less investigated, only few 

studies having explored the mutational events occurring in BPDCN, mainly through targeted 

sequencing approaches14,16,19,20 and without offering novel prospects on treatment options. 

In this study, we sequenced the whole-exome (WES) of 14 BPDCN samples and of the 

BPDCN-derived CAL-1 cell line, to discover specific BPDCN genetic vulnerabilities 

supporting the design of new therapeutic strategies. The WES mutational findings were 

complemented by copy number variant (CNV) analysis, RNA and Pathology tissue-chromatin 

immunoprecipitation (PAT-ChIP) sequencing results. The integration of data allowed us to 

identify a successful combinatorial therapy based on epigenetic drugs able to control the 

disease progression in a rapidly progressive BPDCN xenograft model. 
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Methods  

 

BPDCN samples 

We collected 14 BPDCN cryopreserved cutaneous biopsies at diagnosis, 9 matched saliva 

samples and the BPDCN patient-derived cell line, CAL-1. The pathological cases were 

evaluated as previously described17 and diagnosed by experienced haematopathologists (CA, 

EB, FF, LC, MP, ES, CT, MT, and SAP) according to the WHO diagnostic criteria 

classification.2 Informed consent was obtained from each patient in accordance with the 

Ethical Review Board of the Department of Experimental, Diagnostic, and Specialty 

Medicine of the University of Bologna and the Declaration of Helsinki. The DNA was 

extracted as reported in the Online Supplementary Appendix. The main clinical, 

immunohistochemical and cytogenetic features of BPDCN patients are shown in Table S1-S2. 

 

Whole-exome Sequencing (WES) analysis 

We performed paired-end sequencing of matched tumor/normal DNA samples (9 cases), 

tumor only DNA samples (5 cases), and the CAL-1 cell line (Table S3) by using the TruSeq 

Exome Kit and Nextera Rapid Capture Exome kit (Illumina). For more detailes see the Online 

Supplementary Appendix. 

 

Sanger Sequencing 

We validated by Sanger sequencing two candidate nonsense somatic mutations of SUZ12 and 

ASXL1 occurring in two patients, respectively. as described in the Online Supplementary 

Appendix. 

  

Targeted sequencing 

We performed MiSeq targeted sequencing (Illumina) of the 14 BPDCN tumor patients, 7 

normal matched saliva samples and the CAL-1 cell line, already analysed by WES. More 

bioinformatics details are provided in the Online Supplementary Appendix. 
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RNA sequencing (RNA-seq) analysis 

Five BPDCN cases studied by WES and targeted sequencing had enough material for RNA 

extraction and sequencing: these samples represented the RNA-seq discovery set. We also 

collected additional 4 BPDCN cryopreserved cutaneous biopsies, sufficient only for RNA 

sequencing experiments, used as RNA-seq extension set. RNA of 4 normal plasmacytoid 

dendritic cell (pDCs) samples was purchased from AllCells (Alameda, CA, US) and used for 

comparison. For details, see Table S10 and Online Supplementary Appendix 

 

Pathology tissue-chromatin immunoprecipitation (PAT-ChIP) sequencing 

The BPDCN_25 and BPDCN_37 patients were provided with one skin biopsy: half 

cryopreserved and used for WES, targeted and RNA sequencing analysis and half fixed in 

formalin, included in paraffin and used for PAT-ChIP sequencing analysis. PAT-ChIP 

experiments were performed as in Fanelli et al.26 For more details see the Online 

Supplementary Appendix. 

 

CAL-1 cell line 

CAL-1, a BPDCN cell line27, was cultured as reported18.The CAL-1 gene expression profile 

of a previous study was used 17   

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62014) 

 

Mouse model and in vivo treatments 

Experiments were carried out on nonobese diabetic severe combined immunodeficient 

NOD/SCID interleukin-2 receptor g (IL-2Rg)–null (NSG) mice, 6 to 8 weeks old as 

previously reported.13 All animal experiments were carried out in accordance with the 

applicable Italian laws (D.L.vo 26/14 and following amendments) and the institutional 

guidelines. All in vivo studies were ratified by the Italian Ministry of Health. For induction of 

BPDCN in mice, 5.000 CAL-1 cells were injected intravenously (i.v.) through the lateral tail 

vein in non-irradiated mice. Engrafted mice were then treated with Bortezomib, 5’-

Azacytidine, Decitabine and Romidepsin as detailed in the Online Supplementary Appendix. 
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Results 

 

Whole-exome sequencing reveals the epigenetic program dysregulation as the main theme 

of BPDCN mutational landscape 

 

We collected 14 BPDCN cases with a mean age of 56 years at diagnosis (range 9-89 years), a 

male-to-female ratio of 10:4 and the classical BPDCN presentation (Table S1-S2). 1  

The enrolled patients underwent different treatment regimens and 78.5 % (11/14) died of the 

disease from 6.3 to 76 months after the diagnosis or were lost at follow-up. Most patients who 

underwent autologous and/or allogenic hematopoietic stem cell transplantation experienced a 

prolonged survival.  

We performed whole exome sequencing (WES) on 14 BPDCN cases, and on BPDCN patient-

derived CAL-1 cell line and identified 1,302 nonsynonymous SNVs represented 

predominantly by missense SNVs (n =1,251), nonsense SNVs (n = 47) and frameshift 

insertions/deletions (n = 7) (Table S3). To verify the robustness of the WES analysis, 2 

randomly-selected variants occurring in ASXL1 and SUZ12 genes, respectively, were 

validated by Sanger sequencing (Figure S1). To extend the validation to a higher number of 

samples and mutations, a targeted sequencing approach was adopted: 21 SNVs were 

interrogated by MiSeq Illumina technology in the same BPDCN cases analyzed by WES and 

a concordance of 95.2% (20/21 SNVs) was achieved, underlining a high consistency of data, 

as reported in the supplementary data (Table S4-S6). The 1,302 nonsynonymous SNVs 

detected by WES affected 1,166 genes, all but 7 known to be related with pathological 

conditions and reported as mutated in the Catalogue of Somatic Mutations in Cancer 

(COSMIC_v66). 

To identify the biological processes prominently altered by the mutational events, we 

performed a functional enrichment analysis of the 9 genes that were recurrently mutated (≥ 3 

samples) and the 45 genes impacted by deleterious - nonsense or frameshift - SNVs. Among 

the top 10 significantly enriched biological processes, the epigenetic program resulted the 

most represented (P = .0001), followed by the hematopoietic stem cell homeostasis, the Rac 

signaling and the gamma-aminobutyric acid (GABA) secretion (Figure 1A, Table S7). The 

ASXL1 gene, proved to be the most frequently mutated (28%, 4/14 samples), followed by 

TET2 (21%, 3/14 samples) and, both genes displayed in prevalence nonsense or frameshift 
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SNVs located within or upstream of the catalytic domain of the proteins, potentially leading 

to their functional disruption (Figure 1B, Table S8). To identify among the 1,166 BPDCN 

mutated genes those implicated into the epigenetic regulation, we interrogated the Gene 

Ontology database28 and found 25 mutated epigenetic modifier genes controlling chromatin 

accessibility (ARID1a, CHD8, SMARCA1), DNA methylation (TET2, IDH2), or histone post-

transcriptional modifications [methylation (ASXL1, SUZ12, MLL family), demethylation 

(KDM4D), acetylation (EP300, EP400), ubiquitination (PHC1, PHC2), dephosphorilation 

(EYA2), and exchange (SRCAP)]. Of note, 12/14 (86%) BPDCN samples harbored at least 

one of the 25 epigenetic regulator genes mutated and specifically 8/14 (57,14%) patients 

presented a deleterious lesion  (nonsense/frameshift SNV) (Figure 1C and Table S9). Many 

SNVs clustered in the histone methylation pathway, specifically, in genes belonging to the 

Polycomb-repressive complex 2 (ASXL1, ASXL3, SUZ12) and in histone methyltransferases 

(ASHL1, SETMAR, MLL), possibly mining the integrity of the methylation program. Besides 

genetic lesions targeting epigenetic regulators, we also detected mutations potentially 

affecting molecular programs commonly deregulated in myeloid malignancies such as the 

RAS signaling29 (hot-spot SNVs on KRAS or NRAS, alternatively), the DNA repair/cycle 

progression30 (SNVs on BRCA1, ATM, ATR, and RAD52), the Wnt-signaling31 (SNVs on 

WNT3, WNT7B, WNT10 and BCL9L), the cell growth32 (SNVs on RUNX2, MAPK1), and the 

splicing machinery33 (a SNV on ZRSR2) (Figure 1C).  

WES data was also used for cytogenetic copy number variants (CNVs) analysis, which 

highlighted extensive losses along the chromosome 9 and the associated deletion of the tumor 

suppressor CDKN2A gene in 8/14 (57%) BPDCN samples (Figure S2 and Table S2), as 

already reported in the literature.12,15,20 In addition, CNV analysis showed that deletions 

affected six of the nine genes recurrently mutated; deletions were always mutually exclusive 

with mutations (Figure S3). However, no significant correlation was found between genetic 

lesions and clinical data. 
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BPDCN Transcriptome profiling confirms the dysregulation of epigenetic programs 

 

Genetic lesions in key epigenetic modifier genes and in related regulatory networks can 

induce profound perturbations in the transcriptional homeostasis of the cell. To further 

substantiate the impact of mutations affecting the chromatin remodeling pathway in BPDCN, 

we performed RNA sequencing of 5 BPDCNs, considered as the discovery set, already 

studied by WES and MiSeq targeted sequencing (Table S10). We analyzed the patients 

transcriptomes in comparison with that of 4 normal plasmacytoid dendritic cell (pDC) 

samples isolated from the peripheral blood of healthy individuals and used as controls. 

BPDCN tumor samples and pDCs segregated separately, according to their gene expression 

profiles (Figure 2A). Two thousand and thirty-four genes (2,034) were significantly 

deregulated among patients, and about half of them was upregulated (46%) in the BPDCN 

setting. Gene set enrichment analysis (GSEA) reported the significant deregulation of two 

genetic signatures, involved in the methylation process, driven by KDM5B34 histone 

demethylase and PRMT535 methyltransferase-associated gene, respectively. Of note, GSEA 

also detected the significant enrichment of a set of genes associated with the response to a 

DNA demethylating agent36, namely Decitabine (Figure 2B) The GSEA results (NES ≥ 2; 

FDR q-value ≤ .0001) were then validated in an extension set of 4 BPDCN samples and in 

CAL-1 cell line (Figures S4-S5). 

 

Genome-wide ChIP-sequencing substantiates epigenetic dysregulation of cell cycle 

program in BPDCN 

 

To investigate if the transcriptional deregulation of BPDCNs could be linked to specific 

epigenetic assets, we analysed the histone acetylation/methylation profiles of two selected 

BPDCN patients (BPDCN_25 and BPDCN_37). The trimethylation at lysine 27 of histone 3 

(H3K27me3) is closely associated with inactive gene promoters, while its acetylation 

(H3K27ac) well correlates with gene activation, the two epigenetic modifications being 

mutually exclusive. On this premise, we analysed the genome-wide distribution of 

trimethylation and acetylation profiles of H3K27 in BPDCN cases. The analysis of PAT-ChIP 

sequencing data demonstrated that the two patients converged on the same pattern of histone 

acetylation, sharing as much as the 43,6% of the acetylated promoters (Figures 2C-D). PAT-

ChIP sequencing results were then integrated with the RNA sequencing data leading to 
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identify of a signature of 86 genes marked by promoter acetylation and significantly 

overexpressed in the BPDCN RNA sequencing sets. Gene Ontology analysis of the 86 

selected genes highlighted the enrichment in biological processes involved in cell cycle 

progression (FDR q-value <.001, Figure 2E, Table S11). 

 

In vivo BPDCN modeling demonstrates combined epigenetic therapy as effective in 

controlling disease progression. 

 

The integration of results obtained from WES, RNA sequencing and PAT-ChIP-sequencing 

experiments clearly pointed to a fundamental role of epigenetic dysregulation in BPDCN and 

allowed us to hypothesize that this malignancy could display susceptibility to drugs active on 

the epigenetic regulation. Following the demonstration that the CAL-1 cell line shared with 

primary BPDCN samples mutations clustering in chromatin remodeling pathway (Figure 1C) 

and enrichment in the same epigenetic programs (Figure S5), we developed an in vivo CAL-1 

xenograft BPDCN-like model to explore the effects of treatments targeting the acetylation, 

methylation, and also the NF-kB pathways - according to previous results.17,18 To this end, we 

focused on four different FDA approved compounds: 5’-Azacytidine, Decitabine, Romidepsin 

and Bortezomib. 

NSG mice intravenously injected with 5x103 CAL-1 cells rapidly developed a systemic 

BPDCN-like progressive disease, which was defined by the flow cytometry identification of 

human CD56+CD38+ malignant cells in the peripheral blood, bone marrow, spleen and liver, 

as evaluated at 39 days of the injection (Figure 3A). The pathological infiltration by 

malignant BPDCN cells in the mouse model was also confirmed, at the same time point, by 

the histopathological analysis of the bone marrow and spleen samples, which showed the 

presence of atypical cells with blastic morphology and expressing the human CD303/BDCA2 

pDC marker (Figure 3B). Xenografted mice were divided into 11 treatment groups (n=110 

mice) 1 day after CAL-1 injection and treated with either saline or with the hypo-methylating 

agents 5’-Azacitidine or Decitabine, the proteasome inhibitor Bortezomib, and the histone 

deacetylases inhibitor Romidepsin, used as single agents or in combination, according to the 

treatment schedule summarized in Figure 3C. The administration of 5’-Azacytidine and 

Decitabine used as single agents significantly prolonged the mice overall survival as 

compared with saline (median survival 43.6 days vs 32 days, P < .01 for 5’-Azacytidine; 

median survival 44.7 days vs 32 days, P < .05 for Decitabine) while neither Bortezomib nor 

Romidepsin alone showed beneficial effects on the disease outcome. When the same agents 
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were associated in combined treatment experiments, three different combinations proved to 

significantly prolong mouse survival, namely the association of Romidepsin and Decitabine 

(median survival 42.8 days vs 32 days, P < .01), the combination of Romidepsin, Decitabine, 

and 5’-Azacytidine (median survival 41.8 days vs 32 days, P < .05) and the association of 

Decitabine and 5’-Azacytidine (median survival 52.8 days vs 32 days, P < .01), which 

achieved the best result in terms of survival (Figure 3D). Consistently, 5’-Azacytdine and 

Decitabine administered alone reduced the CAL-1-induced splenomegaly as evaluated at day 

39 post-injection and their combination proved to be even more effective (Figure 3E). 
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Discussion 

 

BPDCN is a rare myeloid malignancy with dismal prognosis and no standard therapy. In the 

present study, we performed whole-exome sequencing (WES) of the largest series of 

BPDCNs that – to the best of our knowledge - has so far been reported in the literature. 

Thanks to the integration of WES with RNA and PAT-ChIP sequencing, we provide new 

insights into BPDCN pathobiology by highlighting the dysregulation of epigenetic program as 

a hallmark of the disease and suggest possible novel therapeutic interventions. 

We found BPDCN patients extensively affected by mutations of genes involved in the 

epigenetic regulation: 25 epigenetic modifiers were mutated in almost all BPDCN patients 

(13/14) and the CAL-1 cell line. In more than half patients (8/14), the mutations heralded 

damaging functional alterations (Figure 1C). Some of the mutated genes have already been 

reported in previous studies (e.g. ASXL1, RAS, ATM, ARID1A, and IDH2), although at times 

at different rates than in our series (see ASXL1 and TET2, which were found to be mutated in 

28.6% and 21.4% of our samples vs. 32% and 36% of those of Menezes et al.).19 On this 

respect, we wish to underline that the aim of our study was not only to extensively explore the 

mutational landscape of BPDCN but possibly translate molecular notions into a pre-clinical 

approach. In any case, thanks to the employment of a whole-exome sequencing approach, 

which did not limit our investigation to a priori-selected genes, we recognized additional 

mutated epigenetic factors, never described before but potentially relevant in the BPDCN 

context, like PHF2 histone demethylase that enhances the TP53-tumor suppressor activity37 

and the CHD8 Chromodomain helicase DNA-binding protein-8 that promotes the E2F-

dependent transcription and cell cycle progression.38 Besides the epigenetic pathway, we also 

detected mutations affecting programs common to other myeloid malignancies, such as the 

DNA repair process,30 the Wnt/β-catenin signaling31 and the differentiation pathway.32 

Importantly, the functional enrichment analysis of whole-exome sequencing data showed that 

among all genes/pathways explored, the epigenetic program was the most deregulated one 

(P<.0001). 

To evaluate the impact of the identified epigenetic mutations at gene expression level we 

analysed the transcriptome of samples studied by WES. Among up-regulated genes, the gene 

set enrichment analysis (GSEA) revealed the significant enrichment of two methylation 

pathways, respectively driven by the KDM5B histone-demethylase34 and by the PRMT5 
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arginine methyltransferase-5:35 these two epigenetic modifiers are reported as over-expressed 

in several cancer types and also represent promising therapeutic targets.39 Blockade of the 

PRMT5 activity reduces cell survival in chronic myelogenous leukemia40 and inhibition of 

KDM5B demethylation correlates with cell growth arrest in hepatocellular carcinoma and 

breast cancers.41,42 We also identified the overexpression of one gene signature36 specifically 

responsive to the administration of the hypomethylating agent Decitabine: a molecular finding 

bearing important therapeutic implications (FDR q = 1.85E-5). To gain a functional insight 

into the epigenetic landscape of BPDCN samples, we performed PAT-ChIP sequencing of 

H3K27-acetylation/trymethylation signals of two BPDCN patients. The trimethylation of 

H3K27 marks inactive gene promoters and enhancers, while its acetylation correlates with 

gene activation.43 PAT-ChIP sequencing data showed that the two patients converged on the 

same epigenetic pattern sharing about half of the identified H3K27-acetylated promoters. 

Interestingly, the common acetylated regions comprised 10 super-enhancers (SE) bound by 

the Bromodomain-containing protein 4 (BRD4), as described by Ceribelli et al in a recent 

work on BPDCN (data not shown).24 

The integration of PAT-ChIP and the RNA sequencing data highlighted a set of 86 genes 

involved in the cell-cycle progression aberrantly overexpressed and marked by H3K27-

promoter acetylation. This finding lets envisage that the cell-cycle deregulation could be 

driven by H3K27-acetylation signals, a hypothesis deserving future ad-hoc studies that can 

help to clarify the mechanism of proliferation of this largely obscure disease. 

The disease rareness (incidence of 0.000045%) and its extremely aggressive behavior (OS 

from 10 to 19 months) limited the number of available patients included in biological and/or 

clinical studies. For these reasons, not surprisingly, BPDCN is still an orphan tumor lacking a 

standardized and effective therapeutic approach. In the last few years, new molecular studies 

opened the way to innovative target therapies (e.g., Bortezomib17,18, Venetoclax22, BET-

inhibitors24,SL-40125), some of which, are showing promising results, and same safety 

concerns, in early clinical trials. Of note, all the treatments proposed, mainly resulted from the 

investigation of the RNA transcriptome, while the DNA features of BPDCN patients were 

scarcely evaluated.  

We thus decided  to tackle this yet incurable disease by designing the first therapeutic strategy 

modeled on the DNA mutational status of BPDCN patients, analyzed by whole exome 

sequencing. The WES mutational findings enhanced by the RNA and PAT-ChIP sequencing 

results clearly evidenced the prominent role of the epigenetic program dysregulation among 

BPDCN patients and guided  our therapeutic approach towards the use of epigenetic agents. 
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In particular, we tested in vivo the efficacy of FDA-approved epigenetic drugs which could be 

considered for potential repositioning in clinical trials: two hypomethylating agents such as 

Decitabine and  5’-Azacytidine, and the histone deacetylase inhibitor Romidepsin. We 

hypothesized that these drugs could impact on tumor progression as: I) BPDCN patients 

displayed potential sensitivity to hypomethylating agents, particularly to Decitabine, as 

detected by GSEA analysis; II) both 5’-Azacytidine and Decitabine are currently in use for 

the treatment of myelodysplastic syndromes,44,45 which are myeloid neoplasms sharing with 

BPDCN many epigenetic mutated genes; III) preclinical studies on several malignancies 

demonstrated that the action of Decitabine is synergized by Romidepsin.46 In the light of this, 

our experimental design focused on epigenetic drugs with a large scale activity, aiming to 

explore whether we might induce cell death by perturbation of the malignant epigenetic 

programme. In addition to the epigenetic drugs, we also verified the efficacy of Bortezomib, a 

proteasome inhibitor, which was previously shown to significantly induce in vitro and in vivo 

BPDCN cells death17,18.   Our experiments revealed that the treatment with 5’-Azacytidine in 

combination with Decitabine significantly inhibits disease progression and extend survival 

(p<0.01) in a preclinical mouse model. In the past, two reports experimented the use of  5’-

Azacytidine on elderly BPDCN patients, though this therapeutic choice was not yet sustained 

by a molecular rationale.47,48 Here we demonstrated that 5’-Azacytidine is more effective in 

tumor eradication if combined with Decitabine. Further studies are ongoing to elucidate the 

synergistic mechanisms between the two drugs. 

In conclusion, we identified the deregulation of epigenetic program as a genetic hallmark of 

BPDCN and suggested a novel therapeutic approach based on the combination of two 

hypomethylating agents 5’-Azacytidine and Decitabine to be tested in future clinical trials.   
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Figure legends 

 

Figure 1. The genomic characterization of BPDCN. (A) Circos plot graphical 

representation of the functional analysis performed on 54 genes recurrently mutated and/or 

affected by nonsense and frameshift SNVs in BPDCN WES samples. The four biological 

processes most significantly enriched are reported in the counterclockwise order from the 

highest to the lowest p-value: the gamma-aminobutyric acid (GABA) secretion (in violet), the 

Rac signaling (in red), the hematopoietic stem cell homeostasis (in light blue) and the 

epigenetic process (in green). The genes are colored according to their belonging to one or 

more of the biological process represented. In grey the genes not involved. (B) Overview of 

ASXL1 and TET2 mutations identified. Structure of ASXL1 protein with C-terminal plant 

homeodomain catalytic region and structure of TET2 protein showing the catalytic core 

region: the cysteine-rich (Cys) and double-stranded beta-helix (DSBH) domains. Empty 

circles: somatic SNVs. Symbols: “+” is for frameshift SNV and “*” for nonsense SNV. (C) 

Heatmap representation of SNVs in BPDCN WES samples and its distribution among 

selected pathways commonly mutated in myeloid disorders. The SNVs, the affected genes 

and the related pathways are reported in rows, while, the BPDCN samples in columns. 
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Figure 2 

 

Figure 2. The transcriptome and H3K27 trymethylation/acetylation profiling of 

BPDCN. (A) Unsupervised hierarchical clustering performed on 5 BPDCN samples and 4 

plasmacytoid dendritic cell (pDCs) samples according to the expression level of the RNA 

sequencing data. In the heat-map each row represents a gene and each column a sample. The 

color scale exemplifies the relative expression level of a gene across all samples: in red are 

represented genes with an expression level above the mean, in blue the genes with an 

expression level lower than the mean. Tumors (BPDCNs) and controls (pDCs) cluster in two 

distinct groups. (B) Gene Set Enrichment Analysis (GSEA) plot illustrates, in BPDCN 

patients the enrichment of the KDM5B and PRMT5 gene signatures reported in literature 34-36 

as well as the enrichment of a set of genes, described by Missiaglia et al 37 as responsive to an 

hypomethylating treatment, namely Decitabine. NES normalized enrichment score ≥ 2; FDR 

q-value false discovery rate ≤ .0001. (C) Visualization of anti-H3K27ac and anti-H3K27me3 

normalized PAT-ChIP sequencing profiles in the UCSC Genome Browser showing genomic 

regions from patient BPDCN_25 and BPDCN_37. In the red boxes are indicated 

exemplificative regions displaying in both patients a similar level of anti-H3K27ac. Black 

solid rectangles represent genes in correspondence of the anti-H3K27ac peaks. (D) The Venn 

diagram shows that BPDCN_25 and BPDCN_37 patients shares 4542 H3K27ac promoters. 

E) Histogram representation of the top 10 significant biological process emerged by Gene 

Ontology (GO) analysis of 86 upregulated genes marked by H3K27ac in their promoters. The 

GO categories are shown in x-axis and the fold enrichment values of observed versus 

expected genes are reported in the y-axis (FDR qvalue < .001). 
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Figure 3 

 

Figure 3. The efficacy of epigenetic agents in a preclinical BPDCN mouse model. (A) 

Pharmacodynamic assessment of the percentage of human CD56+CD38+ cells in the 

peripheral blood (PB), bone marrow (BM) of the femur and spine, spleen, and liver of a 

representative BPDCN mouse model vehicle-treated, after 39 days from CAL-1 injecton. The 

cytofluorometric assays shows the tumor dissemination in all the tissues analysed. (B) 

Hematoxylin and eosin staining of bone marrow and spleen samples collected in a 

representative vehicle-treated NSG mouse at 39 days after CAL-1 injection (H&E; x400; 

Olympus DP2-SAL) . The histological assay shows a marked dissemination of blast elements. 

The immunohistochemistry detection of the CD303 (BDCA-2) antigen, in the murine bone 

marrow, indicates the presence of specific BPDCN blasts cells (Immmuno-alkaline 

phosphatase; Gill’s haematoxylin nuclear counterstaining; x400; Olympus DP2-SAL). (C) 

Graphical representation of the treatment schedules observed in BPDCN mouse model. Each 

treatment is represented by a single color or by a combination of colors and was administered 

for 4 weeks as follows: 5’-Azacytidine 5 mg/kg 5 doses at 2-day intervals (pink), Decitabine 

2.5 mg/kg 3 doses at 2-day intervals (orange), Romidepsin 0.5 mg/kg every day (light blue), 

Bortezomib 0.5 mg/kg two times weekly (yellow). The same doses were administered in 

various combinations too. (D) Kaplan–Meier curves comparing overall survival of BPDCN 

mice models respectively treated with vehicle or the above reported treatments. Each 

treatment is summarized by a box colored as described above. The symbol “*” indicates that 

the combination of Decitabine and 5’-Azacytidine was the most effective in prolonging mice 

survival. Curves were compared by log-rank test, n= 5 mice/treatment arm. (E) 

Pharmacodynamic assessment of spleen size in four representative NSG mice CAL-1 injected 

after 39 days of treatment with vehicle (mouse Control), Decitabine (mouse Deci),5’-

Azacytidine (mouse Aza), and 5’-Azacytidine plus Decitabine (mouse Deci+Aza) according 

to the dosing schedule reported above. 
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Immunohistochemistry and cytogenetics 

Fourteen BPDCN cases were investigated and their clinical characteristics are reported in Table S1. All the skin biopsies at diagnosis were reviewed 

by a panel of at least three expert hematopathologists (CA, EB, FF, LC, MP, ES, CT, MT, and SAP) according to the WHO Classification criteria. 
1
 

Immunohistochemistry (Dako Denmark) used the following antibodies: CD4,CD56, TdT (Novacastra) CD123 (BD Biosciences PharMingen), 

CD303/BDCA2 (Dendritics), TCL1 (Cell Marque), CD68PGM1, MPO, CD34, CD3, CD30 (Dako Denmark). If necessary, additional antibodies 

were evaluated accordingly to the specific requests of the single case (not reported). For the cytogenetic investigation of the BPDCN patients we 

used the whole exome sequencing data in order to map at highest resolution the chromosome 9 at cytoband p21 and evaluate the presence of the 

CDKN2A gene deletion in homo/heterozigosity; the most relevant alteration recognized  by the WHO in the BPDCN context. 

Immunohistochemistry and cytogentic characteristics are summarized in Table S2.  

 

DNA sample extraction 

We used MagCore Genomic DNA Tissue Kit (RBC Bioscience Corp, Taiwan) for DNA extraction from cryopreserved tumoral skin biopsies, 

Oragene DNA kit (DNA Genotek Inc., ON, Canada) for DNA from saliva samples and MagCore Cultured Cells DNAKit (RBC Bioscience Corp, 

Taiwan) for DNA extraction from the CAL-1 cell line. All the samples were then loaded on the semi-automatic MagCore nucleic acid extractor 

(RBC Bioscience Corp, Taiwan). DNA quantity was evaluated by the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen Life technologies, UK) 

and all the samples passed the quality check. 
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Informed consent was obtained from each patient in accordance with the guidelines of the Institutional Review Board of the Department of 

Experimental, Diagnostic, and Specialty Medicine of the University of Bologna and the Declaration of Helsinki. 

 

Whole Exome Sequencing (WES) libraries  

Whole exome sequencing libraries were prepared by using the TruSeq Exome Kit (Illumina, San Diego, CA, USA) and Nextera Rapid Capture 

Exome kit (Illumina, San Diego, CA, USA). According to the kit instructions the genomic DNA of each patient was fragmented to provide DNA 

fragments with a base pair peak at 350 bp, ligated at the both ends with specific adapters and then purified by Agencourt AMPure XP beads 

(Beckman Coulter, Brea, CA, USA). The DNA was then amplified by ligation-mediated PCR, purified, and hybridized. Hybridized fragments 

bounded to strepavidin beads whereas non-hybridized fragments were washed out. Captured DNA library amplification products were assessed for 

quality by Agilent 7500 DNA assay (Agilent, Santa Clara, CA, USA) and quantified by Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen Life 

technologies, UK), according to the manufacturer’s protocol. Each captured library was subjected to cluster generation on cBot instrument 

(Illumina, Inc., San Diego, CA, USA) and finally paired-end sequencing was performed on the Illumina HiScan SQ platform (Illumina, San Diego, 

CA, USA) to generate 100 bp paired-end reads (2 × 100PE).  All the libraries passed the quality check. 

 

Whole exome sequencing analysis 

We performed paired-end sequencing of matched tumor/normal DNA samples (9 cases), tumor only DNA samples (5 cases), and the CAL-1 cell 

line (Table S3). Illumina HiScanSQ analysis produced an average of 70 million paired-end reads per sample. Average coverage breadth, defined as 
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the percentage of the captured coding sequence of a haploid reference covered by reads, was 98% (92% at 20x, 72% at 50x). We computed breadth 

of coverage using cnvkit (version 0.9.0), pysam (version 0.12.0.1) and samtools (version 1.6). Paired-end reads were mapped to the hg19 reference 

genome using the Burrows-Wheeler Aligner (BWA version 0.5.9)
2
 alignment tool. We detected variants as sites that differed from the reference in 

each sample independently. To assess statistical significance of variant calling we used the SAVI algorithm (Statistical Algorithm for Variant 

Identification) developed at Columbia University.
3
 Briefly, SAVI constructs empirical priors for the distribution of variant frequencies for each 

sample. High-credibility intervals (posterior probability ≥ 1–10−5) are constructed for the corresponding change in frequency between tumor and 

normal samples. A discrete set of frequencies will be the base for constructing prior and posterior distribution and posterior probability is connected 

to the prior by a modified binomial likelihood. Variant with total depth in tumor and normal lower than 10x were filtered. Then, we first selected 

somatic variant with frequency greater than 10% in tumor samples and less than 3% in normal samples. In samples without a matched normal 

control we selected variants with depth greater than 20x and frequency greater than 25%. To remove systematic errors, we created an internal 

database with all the variants present in normal samples, and excluded all variants that were found to be present in any of the normal samples.  

Functional Enrichment Analysis 

To perform the functional mutation enrichment analysis, we selected only genes affected by deleterious SNVs (nonsense or frameshift) and/ or 

recurrently mutated in ≥ 3 samples, for a total of 54 genes. We analyzed the selected gene list by WebGestalt toolkit
4
, using the Overrepresentation 

Enrichment Analysis (ORA) method and the Gene Ontology/Biological Process functional database. In Table S7 the top 10 most significant 

biological processes emerged from the analysis. 
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Copy Number Analysis  

We obtained copy number variation calls using cnvkit (version 0.9.0)
5
. Where possible, default parameters were used. We used GRCh37.75 human 

genome as reference. Starting from this reference, we built 10 kbases anti-target regions (as required by cnvkit). Then, we computed copy ratio, 

splitting the normal samples with respect to their exome sequencing preparation kit. The two normal reference copy number profiles were then used 

to estimate the copy ratio for the tumor samples. Finally, the copy ratios for each sample were discretized into absolute copy number calls using the 

“call” command of the cnvkit suite. Tumor purity (100% for the cell line, and 90% for the other samples) was the single parameter of the “call” step. 

For each sample and computation, we used the appropriate bedfile provided by each exome sequencing preparation kit: Nextera rapid capture 

exome kit (v1.2) and TruSeq Exome Kit (2012). 

 

Sanger Sequencing 

We validated by conventional Sanger sequencing two candidate nonsense somatic mutations of SUZ12 and ASXL1 occurring in the patients 

BPDCN_38 and BPDCN_39, respectively, as reported by WES analysis. We sequenced both tumor and normal DNA. The following PCR primers 

were custom-designed using Primer3 on line software (http://bioinfo.ut.ee/primer3-0.4.0/primer3/): 

ASXL1-Forward-GGACTCACAGATGGGCTAGG, ASXL1-Reverse-AGAATGGGACCATTGTCTGC; SUZ12-Forward 

TCATGCCTGTATGCTGTTTG, SUZ12-Reverse- GAAGCAGATTCCCCCTTTTC. 

The PCR products were sequenced both forward and reverse with ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction kit (Version 

3) and loaded on ABI PRISM 3100-Avant Genetic Analyzer (Applied Biosystems, Foster City, CA, USA), according to manufacturer's instructions. 

http://bioinfo.ut.ee/primer3-0.4.0/primer3/
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Tumor sequences were compared with the corresponding germline sequences using FinchTV version 1.4 software (Geospiza Inc., Seattle City, WA, 

USA). 

 

Targeted sequencing libraries 

We performed targeted sequencing of the 14 BPDCN tumor samples, 7 normal matched saliva samples, and the CAL-1 cell line (Supplemental 

Material, Table S4). 

To validate the WES results we used the MiSeq TruSeq Custom Amplicon (Illumina, Inc., San Diego, CA, USA) a highly multiplexed targeted 

sequencing assay planned with DesignStudio, an online software, available at Illumina website. We developed a custom amplicon panel to 

specifically interrogate as many as 21 SNVs in 9 genes (Table S5). We used the TruSeq Custom Amplicon Kit with 250 ng of DNA per sample and 

the amplicon libraries were loaded on MiSeq instrument (Illumina, Inc., San Diego, CA, USA) to generate 2 × 151-bp paired reads, according to the 

manufacturer’s instructions. All libraries passed the quality check and the MiSeq targeted sequencing approach allowed us to reach a median 

coverage depth of 647X, a mean coverage depth of 1600X (ranging from 98X to 4056X). 

 

Targeted sequencing analysis 

Reads were aligned to the UCSC hg19 reference genome using BWA-MEM. Aligned reads were analyzed using the SAVI algorithm, and variants 

were selected based on coverage depth and frequency. Specifically, SAVI constructed empirical priors for the distribution of variant frequencies in 

each sample, from which we obtained a corresponding high-credibility interval for the frequency of a particular allele. To obtain estimates for 
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alleles with frequencies as low as 0.5%, we chose logarithmically spaced precision for the priors and posteriors. Furthermore, we considered 

variants detected in the normal samples and absent in the tumor as false positive calls and determined that alleles with lower bound interval of 

posterior probability less than 0.5 produced a false discovery rate < 3%.  

 

RNA sequencing libraries 

Total RNA from the nine biopsies was extracted using TRIzol reagent (Invitrogen). Paired-end libraries (2x75 base pair) were prepared according to 

the TruSeq RNA sample preparation v2 protocol (Illumina, San Diego, USA). Briefly, 2 µg of Poly(A)+ RNA were purified from total RNA using 

poly-T oligo attached magnetic beads and then used for fragmentation into 130–290 bp fragments. First strand of cDNA synthesis was performed 

using reverse transcriptase enzyme (SuperScript II, Invitrogen, Life Technologies, USA) and random hexamer primer, followed by generation of 

double-stranded cDNA. AmpureXP beads (Beckman Coulter, Brea CA) were used to purify the ds cDNA and an End Repair step was performed to 

convert the overhangs, resulting from fragmentation, into blunt ends by 3’ to 5’ exonuclease activity. A single “A” nucleotide was added to the 

3’ends of the blunt fragments to prevent them from ligating to one another during the adapter ligation reaction. This approach was adopted to ensure 

a low rate of chimera (concatenated template) formation. Subsequently, sequencing adapters were added to the ends of the ds cDNA fragment and a 

PCR reaction was used to selectively enrich those ds cDNA fragments that had adapter molecules on both ends, amplifying the amount of ds cDNA 

in the final libraries. Lastly, PCR library products were purified by AmpureXP beads and quality control analysis was assessed using a DNA-1000 

(Agilent, USA). The quantification was performed by the Quant-it PicoGreen dsDNA Assay Kit per manufacturer’s protocol (Invitrogen, Life 
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Technologies, USA). The resulting libraries were sequenced on an Illumina HiScan SQ (Illumina, San Diego, USA) following the manufacturer's 

instructions. 

 

RNA sequencing analysis  

We mapped 9 BPDCN samples – 5 cases belonging to the discovery set and 4 cases belonging to the extended  set- by means of STAR aligner 

(version 2.4.0)
6  

on human reference genome hg19
 
and obtained an average of 70 million paired-end mapped reads per sample. Differential 

expression analysis and mRNA quantification was performed by means of DeSeq (Table S10).7  

Gene set enrichment analysis was separately performed on the discovery and extended set  by means of GSEA software and Molecular Signature 

Database (MSigDB)8 on the previously ranked gene list based on regularized base-2 DeSeq logarithm transformation.  

Integration of RNA and PAT-ChIP sequencing 

We recognized 86 genes up-regulated and also marked by H3K27acetylation. The Gene ontology Analysis was conducted on the 86 genes by 

WebGestalt toolkit,
4
 using the Overrepresentation Enrichment Analysis (ORA) method and the Gene Ontology/Biological Process functional 

database. In Table S11 the top 10 most enriched biological processes emerged from the analysis 

 

Pathology tissue-chromatin immunoprecipitation (PAT-ChIP) sequencing  

PAT-ChIP experiments were performed as in Fanelli et al
9 

with the following modification: sonication for chromatin extraction was performed in 

400 ml. Antibodies used were: anti-Histone H3acetylK27 (ab472) and anti-trimethyl-Histone H3K27 (07-449). Immunoprecipitated DNA was 
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purified with QIAGEN columns and, after library preparation, sequenced with a HiSeq2000 in multiplexed run to obtain 50 bp single-end reads 

following manufacturer protocols. FASTQ files were quality checked and filtered with NGS QC Toolkit (versione 2.3.3) using default parameters.  

Alignments were performed with Burrows-Wheeler Aligner (version 0.7.10)
2
 to hg18 using default parameters. SAMtools (version 1.2) and 

BEDtools (version 2.24) were used for filtering steps and file formats conversion. Duplicate reads were discarded and peaks were identified from 

uniquely mapping reads, using MACS (version 2.1.0) callpeak with default parameters and -broad, -SPMR, -shiftsize 73 options. The q-value cutoff 

used to call significant regions was 0.05. UCSC tools and genome browser was used for data visualization.  

ChIP-seq signals of peaks called by MACS were subjected to unbiased clustering, using the seqMINER 1.3.2 platform.10 Linear Kmeans was used 

for clustering, with the following parameters: left and right extension = 5 kb, internal bins (with respect to the peaks) = 160, number of cluster = 25. 

seqMINER was also used to generate the heatmaps and the average profiles of read density for the different clusters.  
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Mouse Model 

Experiments were carried out on nonobese diabetic severe combined immunodeficient NOD/SCID interleukin-2 receptor g (IL-2Rg)–null (NSG) 

mice, 6 to 8 weeks old. NSG mice were bred and housed under pathogen-free conditions in the animal facilities at the European Institute of 

Oncology–Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IEO-IFOM, Milan, Italy) as previously reported.
11

 All 

animal experiments were carried out in accordance with the applicable Italian laws (D.L.vo 26/14 and following amendments) and the institutional 

guidelines. All in vivo studies were ratified by the Italian Ministry of Health. For induction of BPDCN in mice, 5.000 CAL-1 cells were injected 

intravenously (i.v.) through the lateral tail vein in non-irradiated mice. Human engraftment was defined by means of percentage of human cells in 

peripheral blood from tail vein of the recipient animals.    

Human cell engraftment in the peripheral blood, bone marrow of the femur and of the spine, spleen and liver was investigated by flow cytometry 

and immunohistochemistry from 39 days after transplant onward in a representative mouse vehicle-treated. The phenotype of human cells in NSG 

mice was evaluated by flow cytometry using the following anti-human antibodies: anti-CD38-APC (clone LS198-4-3), -CD45-APC-Cy7 (clone 

J33), -CD56-PE (clone N901) from Beckman-Coulter and anti-mouse CD45-FITC (clone 30-F11) from Becton Dickinson (BD) to exclude murine 

cell contamination from the analysis. After red cell lysis, cell suspensions were evaluated by a FACSCalibur (BD) using analysis gates designed to 

exclude dead cells, platelets and debris. Percentages of stained cells were determined and compared to appropriate negative controls. Seven-

aminoactinomycin D (7AAD; Sigma-Aldrich) was used to enumerate viable, apoptotic and dead cells. Hematoxylin and eosin (H&E) staining was 

performed on the bone marrow and spleen of transplanted mice vehicle-treated after 39 days. Immunohistochemistry was performed on samples 
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obtained from the spine of transplanted mice vehicle-treated after 39 days by using an anti-BDCA2/CD303 antibody (Dendritics, Lyon, France; 

Clone 124B3; dilution: 1:20). The test was carried out as previously described.
11

 

 

In vivo treatments  

Bortezomib, 5’-Azacytidine, Decitabine provided by Sigma-Aldrich (Sigma-Aldrich Corporation, St. Louis, MO, USA) and Romidepsin provided 

by Santa Cruz (Santa Cruz Biotechnology, Santa Cruz, CA), were dissolved in saline (0.9% w/v NaCl) and injected intraperitoneally into the mice: 

Bortezomib was administrated at 0.5 mg/kg two times weekly for 4 weeks, 5’-Azacytidine 5 mg/kg 5 doses (2-day intervals), Decitabine 2.5 mg/kg 

3 doses (2-day intervals) and Romidepsin 0.5 mg/kg every day for 4 weeks. Drug dosages were previously defined as non-toxic in mice not injected 

with CAL-1. Administration started one day after CAL-1 cells injection. Mice were monitored for survival daily until reaching humane end-points. 

The log-rank test was used to compare survival between different groups. All experiments were carried out in duplicate, a total of 110 animals 

having been treated. 
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Table S1. Patients clinical characteristics 

Sample Sex Age 

(Y) 

Tissue Other sites F. 

Up 

(mo)  Main Therapy Transplant 

BPDCN_40 F 9 Skin BM DOD 71.5 AIEOP AML 2002/HR Auto-SCT 

BPDCN_39 M 89 Skin NA LOST NA NA NA 

BPDCN_23 M 19 Skin // DOD 76 CHOP + MTX Allo-SCT 

BPDCN_43 M 67 Skin BM, LN DOD 6.3 GIFOX NO 

BPDCN_25 M 62 Skin BM, PB, LN ADF 21 Hyper-CVAD NO 

BPDCN_45 F 66 Skin LN DOD 36 Hyper-CVAD Auto-SCT 

BPDCN_46 M 29 Skin PH ADF 57 Hyper-CVAD Auto-SCT 

BPDCN_41 M 60 Skin // DOD 41.3 ICE Auto + Allo-SCT 

BPDCN_47 M 78 Skin // ADF 74 Local RT NO 

BPDCN_49 F 49 Skin // DOD 28 Local RT NO 

BPDCN_42 F 73 Skin BM, PB, LN, PL DOD 7.6 MICE NO 

BPDCN_37 M 75 Skin NA DOD 9 NA NA 

BPDCN_38 M 69 Skin BM DOD 6.4 NILG AML 02/06 Allo-SCT 

BPDCN_50 M 37 Skin LN LOST NA NA NA 

 

Abbreviations: BPDCN, blastic plasmacytoid dendritic cell neoplasm; y, years; mo, months; M, male; F, 

female; BM, bone marrow; LN, lymph node, PB, peripheral blood; PH, pharynx; PL, pleura; DOD, died 

of disease; AWD, alive with disease; ADF, alive disease free; LOST, lost at follow-up; NA, not 

available. AIEOP AML 2002/HR, Associazione Italiana di Ematologia e Oncologia Pediatrica acute 

myeloid leukemia high-risk children 2002/01 trial; CHOP, cyclophosphamide, doxorubicin, vincristine, 

prednisone; CHOP+MTX, cyclical chemotherapy with high-dose methotrexate and CHOP; GIFOX, 

gemcitabine, ifosfamide, and oxaliplatin; Hyper-CVAD, alternate cycles of hyper-fractionated 

cyclophosphamide, vincristine, doxorubicin, dexamethasone, and methotrexate and cytarabine; ICE, 

idarubicin, cytarabine, etoposide; RT, radiotherapy; MICE, mitoxantrone, cytarabine, etoposide; NILG 

AML 02/06, Northern Italy Leukemia Group acute myeloid leukemia 02/06 trial; Auto-SCT, autologous 

stem cell transplant; Allo-SCT,  allogenic stem cell transplant. 
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Table S2 . Patients immunohistochemical and cytogenetic characteristics 

Case No CD3 CD4 CD30 CD34 CD56 CD68PGM1 CD123 CD303/BDCA2 TCL1 MPO TdT DEL_CDKN2A 

Y/N 

BPDCN_23 (-) (+) (-) (-) (+) (+ -) (+) (+) (+) (-) (-) Y  homozigosity 

BPDCN_25 na (+) na (-) (+) (+ -) (+) (+) (+) (-) (-) Y heterozigosity 

BPDCN_37 (-) (+) na na (+) (- +) (+) na na (-) (-) N 

BPDCN_38 (-) (+) na (-) (+ -) (- +) (+) (+) (+) (-) na Y heterozigosity 

BPDCN_39 (-) (+ -) (-) (-) (+) (- +) (+) (+) na na (-) Y heterozigosity 

BPDCN_40 na (- +)  na (-) (+) na (+) (+) (- +) na (+ -) N 

BPDCN_41 (-) (+) (-) (- +) (+ -) (- +) (+) (+) (+ -) (-) (-) N 

BPDCN_42 na (+) na na (+) na (-) (+) na na na Y homozigosity 

BPDCN_43 (- +) (-) (-) (-) (+) na (+) (+) na (-) (-) N 

BPDCN_45 (-) (- +) na (-) (+ -) (- +) (+ -) (+) (+) (-) (-) N 

BPDCN_46 (-) (+) (-) (- +) (+) (- +) (+) na (-) na na Y heterozigosity 

BPDCN_47 (-) (+ -) (-) (-) (+) (+ -) (+) (+) (+ -) (-) (-) N 

BPDCN_49 (-) (+) (-) (-) (+) (-/+) (+) na na (-) (-) Y heterozigosity 

BPDCN_50 (-) (+) na (-) (+) (-/+) (+) (-) na (-) (-) Y homozigosity 

 

Abbreviations: BPDCN, blastic plasmacytoid dendritic cell neoplasm; (+), positive > 75% cells ; (+ -), positive  50-75% cells; (- +), positive 25-

50%; (-), negative, no cell; DEL, deletion.
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Table S3. BPDCN samples sequenced by Whole-Exome Sequencing. 

 

 

Sample Wes Tumor cells % 

BPDCN_37 Matched ≥90% 

BPDCN_38 Matched ≥90% 

BPDCN_39 Matched ≥90% 

BPDCN_40 Matched ≥90% 

BPDCN_43 Matched ≥90% 

BPDCN_45 Matched ≥90% 

BPDCN_46 Matched ≥90% 

BPDCN_47 Matched ≥90% 

BPDCN_49 Matched ≥90% 

BPDCN_23 Unmatched ≥90% 
BPDCN_25 Unmatched ≥90% 

BPDCN_41 Unmatched ≥90% 

BPDCN_42 Unmatched ≥90% 

BPDCN_50 Unmatched ≥90% 

CAL-1  Unmatched 100% 
 
Abbreviations: BPDCN, blastic plasmacytoid dendritic 

cell neoplasm; CAL-1, blastic plasmacytoid dendritic 

cell line 
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Table S4. BPDCN samples sequenced by MiSeq targeted sequencing. 

 

 

Sample MiSeq Tumor cells % 

BPDCN_37 matched ≥90% 

BPDCN_39 matched ≥90% 

BPDCN_40 matched ≥90% 

BPDCN_43 matched ≥90% 

BPDCN_45 matched ≥90% 

BPDCN_46 matched ≥90% 

BPDCN_49 matched ≥90% 

BPDCN_23 unmatched ≥90% 
BPDCN_25 unmatched ≥90% 

BPDCN_38 unmatched ≥90% 

BPDCN_41 unmatched ≥90% 

BPDCN_42 unmatched ≥90% 

BPDCN_47 unmatched ≥90% 

BPDCN_50 unmatched ≥90% 

CAL-1  unmatched 100% 

 
Abbreviations: BPDCN, blastic plasmacytoid dendritic 

cell neoplasm; CAL-1, blastic plasmacytoid dendritic 

cell line 
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Table S5. The genes investigated by MiSeq targeted sequencing. 

 

Genes  

 

Regions selected for Miseq panel  

IDH2  Hot spot region (Ex 4)  

KRAS  Hot spot region (Ex 2, 3)  

BRAF  Hot spot region (Ex 11, 15)  

ZRSR2  All coding Exons  

TET2  All coding Exons  

TNFRSF13B  All coding Exons  

ASXL1   All coding Exons  

SUZ12  All coding Exons  

NRAS  Only Exon 2  
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Table S6. MiSeq targeted sequencing validation results. 

 
 
Cases Frequency 

% 

ref/var Gene CCDS AA Validation 

MiSeq  Y/N 

BPDCN_25 28 -/G ASXL1 CCDS13201.1 G642+ Y 

BPDCN_38 55 G/T ASXL1 CCDS13201.1 G710* Y 
BPDCN_39 36 T/A ASXL1 CCDS13201.1 L775* Y 
BPDCN_49 10 C/T ASXL1 CCDS13201.1 R965* Y 
BPDCN_47 49 A/G ASXL1 CCDS13201.1 N986S Y 
BPDCN_41 41 -/A TET2 CCDS47120.1,CCDS3666.1 S657+ Y 
BPDCN_42 27 C/T TET2 CCDS47120.1,CCDS3666.1 Q770* Y 
BPDCN_38 33 G/A TET2 CCDS47120.1,CCDS3666.1 W1003* Y 
BPDCN_43 51 -/A TET2 CCDS47120.1,CCDS3666.1 Q1084+ Y 
BPDCN_42 41 C/T TET2 CCDS47120.1 Q1466* Y 
BPDCN_37 80 C/T TET2 CCDS47120.1 R1516* Y 
BPDCN_42 33 C/G KRAS CCDS8702.1,CCDS8703.1 L19F Y 
BPDCN_CAL-1 99 C/G KRAS CCDS8702.1,CCDS8703.1 G12A Y 
BPDCN_43 34 C/G NRAS CCDS877.1 G12A Y 
BPDCN_41 32 C/T NRAS CCDS877.1 G12S Y 
BPDCN_23 38 C/G BRAF CCDS5863.1 G469A Y 
BPDCN_46 25 C/A BRAF CCDS5863.1 G464V N 

BPDCN_39 42 C/T SUZ12 CCDS11270.1 R654* Y 
BPDCN_50 42 C/T TNFRSF13B CCDS11181.1 R122Q Y 
BPDCN_25 90 C/G ZRSR2 CCDS14172.1 Y373* Y 

BPDCN_25 40 C/T IDH2 CCDS10359.1 R140Q Y 
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Table S7. Top 10 biological processes emerged from gene functional analysis of WES data  

 

Term                    Description    Count       P-value FDR Fold Enrich. 

EPIGENETIC PROCESS     

GO:0016569 covalent chromatin modification 8 0.000101184 0.333669805 5.362358277 

GO:0006325 chromatin organization 9 0.000117091 0.333669805 4.586177715 

GO:0048096 chromatin-mediated maintenance of transcription 2 0.000332385 0.473593505 72.25777778 

GO:0045815 positive regulation of gene expression, epigenetic 3 0.000470088 0.519119857 19.70666667 

HEMATOPOIETIC STEM CELL HOMEOSTASIS     

GO:0061484 hematopoietic stem cell homeostasis 2 0.000111579 0.333669805 120.4296296 

GO:0042592 homeostatic process 13 0.000284612 0.473593505 2.928151843 

RAC SIGNALING 

  

 

 GO:0035020 regulation of Rac protein signal transduction 2 0.000485783 0.519119857 60.21481481 

GABA SECRETION     

GO:0014051 gamma-aminobutyric acid secretion 2 0.000266377 0.473593505 80.28641975 

GO:0015812 gamma-aminobutyric acid transport 2 0.000573097 0.54437804 55.58290598 
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Table S8. SNVs of ASXL1 and TET2 genes. 

 

 

 

Gene  SNV DNA Sample AA SNV Position COSMIC 

TET2 Somatic Unmatched BPDCN_41 S657+ frameshift before interaction with DNA domain // 

Somatic Unmatched BPDCN_42 Q770* nonsense before interaction with DNA domain // 

Somatic Matched BPDCN_43 Q1084+ frameshift before interaction with DNA domain // 

Somatic Unmatched BPDCN_42 Q1466* nonsense before interaction with DNA domain // 

ASXL1 Somatic Unmatched BPDCN_25 G642+ frameshift inside interaction with NCOA1 domain COSM G642*  

Somatic Matched BPDCN_38 G710* nonsense before domain for interaction with RARA COSM1283534 

Somatic Matched BPDCN_39 L775* nonsense before domain for interaction with RARA COSM52930 

Somatic Matched BPDCN_49 R965* nonsense before domain for interaction with RARA COSM132978 
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Table S9. Twenty-five epigenetic modifier genes mutated in BPDCN. 

 

Case chr:pos ref/var Gene AA 

Cosmic_v66_ 

Gene 

MutComFocal 

Mut Score 

Polyphen2  

HDIV_score Polyphen2 HVAR_score SIFT_score 

BPDCN_45 chr1:27106539 G/A ARID1A W1833* 790 1.66E-05 .|. .|. .|1 

BPDCN_23 chr1:155448058 G/A ASH1L R1535C 273 5.00E-07 1.0;1.0 0.99;0.996 0 

BPDCN_25 chr20:31022441 -/G ASXL1 G642+ 849 5.43E-04 

   
BPDCN_38 chr20:31022643 G/T ASXL1 G710* 849 5.43E-04 . . 0.15 

BPDCN_39 chr20:31022839 T/A ASXL1 L775* 849 5.43E-04 . . 1 

BPDCN_49 chr20:31023408 C/T ASXL1 R965* 849 5.43E-04 . . 0.67 

BPDCN_47 chr20:31023472 A/G ASXL1 N986S 849 5.43E-04 0.009;0.009 0.005;0.005 0.45 

BPDCN_46 chr18:31323569 C/T ASXL3 P1253S 131 1.15E-06 0.208 0.029 0.13 

BPDCN_50 chr14:21854308 G/A CHD8 R2125W 205 5.87E-06 0.999 0.988 0 

BPDCN_23 chr14:21861393 G/A CHD8 L1835F 205 5.87E-06 0.004 0.003 0.71 

BPDCN_CAL-1 chr14:21873903 C/T CHD8 G731R 205 5.87E-06 0.999;0.999|. 0.997;0.995|. 0.02|. 

BPDCN_CAL-1 chr4:144457820 T/G SMARCA5 L495* 72 3.68E-07 . . 1 

BPDCN_CAL-1 chr4:95173830 A/C SMARCAD1 N318T 92 5.64E-07 0.028;0.021 0.004;0.009 0.43 

BPDCN_25 chr12:50492757 C/T SMARCD1 Q508* 35 1.60E-06 . . 0.2 

BPDCN_39 chr17:30325762 C/T SUZ12 R654* 54 5.58E-05 . . 1 

BPDCN_CAL-1 chr3:4345101 A/G SETMAR E16G 30 1.34E-06 0.286;0.165;0.009 0.055;0.02;0.003 0.21 

BPDCN_42 chr16:30732644 C/T SRCAP P1130S 275 6.08E-07 0.988;0.979 0.794;0.628 0.09 

BPDCN_41 chr4:106157069 -/A TET2 S657+ 929 2.90E-04 

   
BPDCN_42 chr4:106157407 C/T TET2 Q770* 929 2.90E-04 . . 0.34 

BPDCN_38 chr4:106158108 G/A TET2 W1003* 929 2.90E-04 . . 1 

BPDCN_43 chr4:106158349 -/A TET2 Q1084+ 929 2.90E-04 

   
BPDCN_42 chr4:106193934 C/T TET2 Q1466* 929 2.90E-04 . . 0.25 

BPDCN_37 chr4:106196213 C/T TET2 R1516* 929 2.90E-04 . . 1 

BPDCN_25 chr15:90631934 C/T IDH2 R140Q 607 3.04E-06 1 0.998 0 

BPDCN_47 chr12:49448165 C/G MLL2 W145C 600 1.51E-05 1 1 0 

BPDCN_41 chr7:151843784 A/C MLL3 V4644G 774 1.51E-06 .|0.993;0.804;0.902 .|0.907;0.342;0.415 0.02|0.01 
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BPDCN_CAL-1 chr19:36216708 C/T MLL4 R1292W 223 1.07E-06 1 0.981 0 

BPDCN_50 chr11:94731791 C/T KDM4D R419W 54 2.46E-06 0.002 0.001 0.01 

BPDCN_46 chr9:96429387 C/T PHF2 S738L 105 1.64E-06 0.064;0.002 0.005;0.001 0.21 

BPDCN_CAL-1 chr12:9085218 C/T PHC1 Q389* 65 5.63E-07 . . 0.15 

BPDCN_CAL-1 chr1:33836638 C/A PHC2 A131S 72 7.53E-07 0.009;0.009;0.049 0.014;0.006;0.012 1 

BPDCN_41 chr22:41573648 G/C EP300 G1978A 326 9.51E-07 0.734 0.196 0.46 

BPDCN_CAL-1 chr12:132445627 C/T EP400 P155S 346 4.73E-07 0.196;0.121;0.196;0.245;0.036 0.044;0.044;0.044;0.094;0.028 0.16 

BPDCN_CAL-1 chr12:132471135 C/A EP400 S668Y 346 4.73E-07 0.631;0.631;0.631;0.98;0.753 0.329;0.329;0.329;0.851;0.329 0.05 

BPDCN_46 chr20:45618703 T/A EYA2 D18E 71 1.12E-05 0.0;0.0;0.0;0.0 0.001;0.001;0.001;0.001 0.8 

BPDCN_42 chr20:45702876 C/T EYA2 P188L 71 1.12E-05 0.996;0.846;0.875;0.875 0.797;0.131;0.173;0.173 0.02 

BPDCN_41 chr8:41789947 T/C MYST3 M1931V 193 4.16E-06 0.969 0.914 0.15 

BPDCN_23 chr10:76784746 C/T MYST4 R1135C 209 2.84E-06 1.0;1.0;1.0 0.997;0.998;0.988 0 
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Table S10. Samples analyzed by RNA sequencing. 

Sample WES Set Tumor cells % 

BPDCN_21 N Extension Set ≥90% 

BPDCN_20 N Extension Set ≥90% 

BPDCN_22 N Extension Set ≥90% 

BPDCN_24 N Extension Set ≥90% 

BPDCN_23 Y Discovery Set ≥90% 

BPDCN_25 Y Discovery Set ≥90% 

BPDCN_37 Y Discovery Set ≥90% 

BPDCN_42 Y Discovery Set ≥90% 

BPDCN_43 Y Discovery Set ≥90% 

pDC_1 N Both // 

pDC_2 N Both // 

pDC_3 N Both // 

pDC_4 N Both // 

 

Abbreviations: BPDCN, blastic plasmacytoid dendritic cell neoplasm; pDC, 

plasmacytoid dendritic cells; samples already sequenced by WES Y, yes; N, no. 
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          Table S11. Top 10 significant biological process emerged by Gene Ontology analysis of 86 up-regulated genes marked by H3K27-promoter 

acetylation 

 

Term Description Count P-Value Fold Enrichment FDR 

GO:0007067 mitotic nuclear division 15 3.69034691694026e-10 8.027320606 3.15487757929223e-06 

GO:0007059 chromosome segregation 13 1.26807986333688e-09 9.177333912 3.71276365696005e-06 

GO:0051783 regulation of nuclear division 10 1.63092095384343e-09 14.42590949 3.71276365696005e-06 

GO:0000819 sister chromatid segregation 11 1.8299290971413e-09 11.88292359 3.71276365696005e-06 

GO:0098813 nuclear chromosome segregation 12 2.55158560946711e-09 9.883282675 3.71276365696005e-06 

GO:0000278 mitotic cell cycle 20 2.60575294674936e-09 4.778953557 3.71276365696005e-06 

GO:0000070 mitotic sister chromatid segregation 9 5.32755506377214e-09 15.71664876 6.50646689145543e-06 

GO:0007088 regulation of mitotic nuclear division 9 6.9189063367503e-09 15.25776851 7.39371628410979e-06 

GO:0051301 cell division 15 1.00188266571877e-08 6.299922501 9.0508192280403e-06 

GO:0022402 cell cycle process 22 1.05869917277346e-08 3.967125111 9.0508192280403e-06 
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Supplemental Figures 

Figure S1. Sanger Sequencing validation experiments. Representative chromatograms of matched tumor DNA samples and germline DNA of 

saliva samples showing somatic mutations in exon 13 and exon 16 of ASXL1 and SUZ12 of two patients. respectively. Mutations were detected in 

both strands of tumor DNA and absent from germline DNA. 
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Fig.S2 - Chromosome 9 copy ratio heatmap. Blu color represents chromosome segment loss (homozygous deletion is darker than single-copy 

loss). Red color represents chromosome segment gain. Values of this heatmap are the ratios between each tumor sample segment with respect to the 

corresponding normal reference segment. . (BPDCN_01_U  represent the CAL-1 tumor cell line) . Therefore, a lower ratio (negative number) 

means that the tumor sample segment is less represented with respect to the corresponding normal reference segment. 
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Figure S3. Copy number variants of 9 recurrently mutated genes (≥ 3 BPDCN samples). Each row represents a gene and each column a 

BPDCN sample. 
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Figure S4 Gene Set Enrichment Analysis (GSEA) in BPDCNs extension set . Representative plots illustrate. in BPDCN patients the enrichment 

of the same gene signatures recognized also in BPDCN discovery set: the KDM5B and PRMT5 gene signatures reported in literature
12,13 

 and also 

the enrichment of a set of genes. described by Missiaglia et al
14

 as responsive to a hypomethylating treatment. namely the Decitabine. NES 

normalized enrichment score ≥ 1.8 ; FDR q-val. false discovery rate ≤ 0.02 
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Figure S5. Gene Set Enrichment Analysis (GSEA) in CAL-1 cell line. Representative plots illustrate. in CAL-1 the enrichment of the same gene 

signatures recognized also in BPDCN samples: the KDM5B and PRMT5 gene signatures reported in literature
12,13 

and also the enrichment of a set of 

genes. described by Missiaglia
14

 et al as responsive to a hypomethylating treatment. namely the Decitabine. NES normalized enrichment score ≥ 1.8 

; FDR q-val. false discovery rate ≤ 0.06 
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