40 research outputs found

    Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine

    Full text link
    [EN] Zein, a prolamine obtained from maize, was employed to encapsulate a fish oil highly enriched with docosahexaenoic acid (DHA) by an innovative process termed electrospraying assisted by pressurized gas (EAPG). This technology combines high electric voltage with pneumatic spray to yield a high-throughput encapsulation process. Semi-spherical zein flowable capsules with mean sizes of 1.4 mu m containing the DHA-enriched fish oil were produced by EAPG from inert ethanol solutions at room conditions, presenting a high encapsulation efficiency. The oxidative stability tests carried out in the zein microcapsules obtained by EAPG showed that the DHA-enriched fish oil was efficiently protected over storage time. Sensory tests were also performed on fortified reconstituted milk with the freshly prepared zein/DHA-enriched fish oil microcapsules, suggesting negligible oxidation effects after 45 days. The results described herein indicate that EAPG is a promising innovative high-throughput electrospraying-based methodology for the encapsulation of bioactives and, therefore, the resultant DHA-enriched fish oil containing microcapsules can be industrially applied for the formulation of fortified foods. Industrial relevance: An innovative process, termed electrospraying assisted by pressurized gas (EAPG), is herein originally presented as a novel encapsulation methodology. This technology is based on the combination of high voltage and pneumatic spray, allowing the formation of microcapsules at room temperature conditions. Thus, EAPG shows a great deal of potential to encapsulate nutraceuticals and other bioactives that are sensitive to thermal degradation and/or oxidation. The resultant bioactive-containing capsules can be, thereafter, applied to develop novel fortified food products.The authors would like to thank the Spanish Ministry of Economy and Competitiveness (MINECO) project AGL2015-63855-C2-1-R and to the H2020 EU project YPACK (reference number 773872) for funding.Busolo, M.; Torres-Giner, S.; Prieto, C.; Lagaron, JM. (2019). Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine. Innovative Food Science & Emerging Technologies. 51:12-19. https://doi.org/10.1016/j.ifset.2018.04.007S121951Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2012). The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Research International, 49(1), 379-388. doi:10.1016/j.foodres.2012.07.031Anwar, S. H., & Kunz, B. (2011). The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. Journal of Food Engineering, 105(2), 367-378. doi:10.1016/j.jfoodeng.2011.02.047Anwar, S. H., Weissbrodt, J., & Kunz, B. (2010). Microencapsulation of Fish Oil by Spray Granulation and Fluid Bed Film Coating. Journal of Food Science, 75(6), E359-E371. doi:10.1111/j.1750-3841.2010.01665.xBakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2015). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143-182. doi:10.1111/1541-4337.12179Busolo, M. A., & Lagaron, J. M. (2012). Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Science & Emerging Technologies, 16, 211-217. doi:10.1016/j.ifset.2012.06.008Chen, W., Wang, H., Zhang, K., Gao, F., Chen, S., & Li, D. (2016). Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials. Applied Biochemistry and Biotechnology, 179(7), 1129-1142. doi:10.1007/s12010-016-2054-3Eltayeb, M., Stride, E., Edirisinghe, M., & Harker, A. (2016). Electrosprayed nanoparticle delivery system for controlled release. Materials Science and Engineering: C, 66, 138-146. doi:10.1016/j.msec.2016.04.001Encina, C., Vergara, C., Giménez, B., Oyarzún-Ampuero, F., & Robert, P. (2016). Conventional spray-drying and future trends for the microencapsulation of fish oil. Trends in Food Science & Technology, 56, 46-60. doi:10.1016/j.tifs.2016.07.014Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427-1432. doi:10.1016/j.foodhyd.2008.10.011Filippidi, E., Patel, A. R., Bouwens, E. C. M., Voudouris, P., & Velikov, K. P. (2014). All-Natural Oil-Filled Microcapsules from Water-Insoluble Proteins. Advanced Functional Materials, 24(38), 5962-5968. doi:10.1002/adfm.201400359Ganesan, B., Brothersen, C., & McMahon, D. J. (2013). Fortification of Foods with Omega-3 Polyunsaturated Fatty Acids. Critical Reviews in Food Science and Nutrition, 54(1), 98-114. doi:10.1080/10408398.2011.578221García-Moreno, P. J., Özdemir, N., Stephansen, K., Mateiu, R. V., Echegoyen, Y., Lagaron, J. M., … Jacobsen, C. (2017). Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids, 69, 273-285. doi:10.1016/j.foodhyd.2017.02.013García-Moreno, P. J., Stephansen, K., van der Kruijs, J., Guadix, A., Guadix, E. M., Chronakis, I. S., & Jacobsen, C. (2016). Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. Journal of Food Engineering, 183, 39-49. doi:10.1016/j.jfoodeng.2016.03.015Gomez-Estaca, J., Balaguer, M. P., Gavara, R., & Hernandez-Munoz, P. (2012). Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids, 28(1), 82-91. doi:10.1016/j.foodhyd.2011.11.013Heinzelmann, K., Franke, K., Jensen, B., & Haahr, A.-M. (2000). Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques. European Journal of Lipid Science and Technology, 102(2), 114-121. doi:10.1002/(sici)1438-9312(200002)102:23.0.co;2-0Hogan, S. A., O’Riordan, E. D., & O’Sullivan, M. (2003). Microencapsulation and oxidative stability of spray-dried fish oil emulsions. Journal of Microencapsulation, 20(5), 675-688. doi:10.3109/02652040309178355Hong, X., Mahalingam, S., & Edirisinghe, M. (2017). Simultaneous Application of Pressure-Infusion-Gyration to Generate Polymeric Nanofibers. Macromolecular Materials and Engineering, 302(6), 1600564. doi:10.1002/mame.201600564Lopez-Huertas, E. (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological Research, 61(3), 200-207. doi:10.1016/j.phrs.2009.10.007Moomand, K., & Lim, L.-T. (2014). Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Research International, 62, 523-532. doi:10.1016/j.foodres.2014.03.054Park, J.-M., Kwon, S.-H., Han, Y.-M., Hahm, K.-B., & Kim, E.-H. (2013). Omega-3 Polyunsaturated Fatty Acids as Potential Chemopreventive Agent for Gastrointestinal Cancer. Journal of Cancer Prevention, 18(3), 201-208. doi:10.15430/jcp.2013.18.3.201Partanen, R., Raula, J., Seppänen, R., Buchert, J., Kauppinen, E., & Forssell, P. (2008). Effect of Relative Humidity on Oxidation of Flaxseed Oil in Spray Dried Whey Protein Emulsions. Journal of Agricultural and Food Chemistry, 56(14), 5717-5722. doi:10.1021/jf8005849Pereira, D., Valentão, P., & Andrade, P. (2014). Nano- and Microdelivery Systems for Marine Bioactive Lipids. Marine Drugs, 12(12), 6014-6027. doi:10.3390/md12126014Prieto, C., & Calvo, L. (2017). The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. The Journal of Supercritical Fluids, 128, 227-234. doi:10.1016/j.supflu.2017.06.003Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449-459. doi:10.1111/j.1365-277x.2004.00552.xShams, T., Parhizkar, M., Illangakoon, U. E., Orlu, M., & Edirisinghe, M. (2017). Core/shell microencapsulation of indomethacin/paracetamol by co-axial electrohydrodynamic atomization. Materials & Design, 136, 204-213. doi:10.1016/j.matdes.2017.09.052Shantha, N. C., & Decker, E. A. (1994). Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. Journal of AOAC INTERNATIONAL, 77(2), 421-424. doi:10.1093/jaoac/77.2.421Siriwardhana, N., Kalupahana, N. S., & Moustaid-Moussa, N. (2012). Health Benefits of n-3 Polyunsaturated Fatty Acids. Advances in Food and Nutrition Research, 211-222. doi:10.1016/b978-0-12-416003-3.00013-5Tapia-Hernández, J. A., Torres-Chávez, P. I., Ramírez-Wong, B., Rascón-Chu, A., Plascencia-Jatomea, M., Barreras-Urbina, C. G., … Rodríguez-Félix, F. (2015). Micro- and Nanoparticles by Electrospray: Advances and Applications in Foods. Journal of Agricultural and Food Chemistry, 63(19), 4699-4707. doi:10.1021/acs.jafc.5b01403Tihminlioglu, F., Atik, İ. D., & Özen, B. (2010). Water vapor and oxygen-barrier performance of corn–zein coated polypropylene films. Journal of Food Engineering, 96(3), 342-347. doi:10.1016/j.jfoodeng.2009.08.018Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601-614. doi:10.1016/j.foodhyd.2007.02.005Torres-Giner, S., Martinez-Abad, A., Ocio, M. J., & Lagaron, J. M. (2010). Stabilization of a Nutraceutical Omega-3 Fatty Acid by Encapsulation in Ultrathin Electrosprayed Zein Prolamine. Journal of Food Science, 75(6), N69-N79. doi:10.1111/j.1750-3841.2010.01678.xTorres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Vaughan, V. C., Hassing, M.-R., & Lewandowski, P. A. (2013). Marine polyunsaturated fatty acids and cancer therapy. British Journal of Cancer, 108(3), 486-492. doi:10.1038/bjc.2012.586Wang, Y., Liu, W., Chen, X. D., & Selomulya, C. (2016). Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. Journal of Food Engineering, 175, 74-84. doi:10.1016/j.jfoodeng.2015.12.007Woods, J., & Mellon, M. (1941). Thiocyanate Method for Iron: A Spectrophotometric Study. Industrial & Engineering Chemistry Analytical Edition, 13(8), 551-554. doi:10.1021/i560096a013Xiao, D., Davidson, P. M., & Zhong, Q. (2011). Release and antilisterial properties of nisin from zein capsules spray-dried at different temperatures. LWT - Food Science and Technology, 44(10), 1977-1985. doi:10.1016/j.lwt.2011.07.017Yang, H., Feng, K., Wen, P., Zong, M.-H., Lou, W.-Y., & Wu, H. (2017). Enhancing oxidative stability of encapsulated fish oil by incorporation of ferulic acid into electrospun zein mat. LWT, 84, 82-90. doi:10.1016/j.lwt.2017.05.045Zainal, Z., Longman, A. J., Hurst, S., Duggan, K., Caterson, B., Hughes, C. E., & Harwood, J. L. (2009). Relative efficacies of omega-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. Osteoarthritis and Cartilage, 17(7), 896-905. doi:10.1016/j.joca.2008.12.009Zeisel, S. H. (1999). Regulation of «Nutraceuticals». Science, 285(5435), 1853-1855. doi:10.1126/science.285.5435.1853Zhang, Y., Cui, L., Li, F., Shi, N., Li, C., Yu, X., … Kong, W. (2016). Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems. International Journal of Pharmaceutics, 513(1-2), 191-210. doi:10.1016/j.ijpharm.2016.09.02

    Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging

    Get PDF
    [EN] In this research, different contents of eugenol in the 2.5-25 wt.% range were first incorporated into ultrathin fibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by electrospinning and then subjected to annealing to obtain antimicrobial monolayers. The most optimal concentration of eugenol in the PHBV monolayer was 15 wt.% since it showed high electrospinnability and thermal stability and also yielded the highest bacterial reduction against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This eugenol-containing monolayer was then selected to be applied as an interlayer between a structural layer made of a cast-extruded poly(3-hydroxybutyrate) (PHB) sheet and a commercial PHBV film as the food contact layer. The whole system was, thereafter, annealed at 160°C for 10 s to develop a novel multilayer active packaging material. The resultant multilayer showed high hydrophobicity, strong adhesion and mechanical resistance, and improved barrier properties against water vapor and limonene vapors. The antimicrobial activity of the multilayer structure was also evaluated in both open and closed systems for up to 15 days, showing significant reductions (R ¿ 1 and < 3) for the two strains of food-borne bacteria. Higher inhibition values were particularly attained against S. aureus due to the higher activity of eugenol against the cell membrane of Gram positive (G+) bacteria. The multilayer also provided the highest antimicrobial activity for the closed system, which better resembles the actual packaging and it was related to the headspace accumulation of the volatile compounds. Hence, the here-developed multilayer fully based on polyhydroxyalkanoates (PHAs) shows a great deal of potential for antimicrobial packaging applications using biodegradable materials to increase both quality and safety of food products.This research was funded by the Spanish Ministry of Science and Innovation (MICI) through the RTI2018-097249-B-C21 program number and the H2020 EU project YPACK (reference number 773872). KF-L is a recipient of a Santiago Grisolía (Ref. 0001426013N810001A201) research contract of the Valencian Government (GVA) whereas ST-G holds a Juan de la Cierva¿ Incorporación contract (IJCI-2016-29675) from MICI. The authors would also like to thank the Unidad Asociada IATA-UJI Plastics Technology.Figueroa-López, KJ.; Cabedo, L.; Lagaron, JM.; Torres Giner, S. (2020). Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Frontiers in Nutrition. 7:1-16. https://doi.org/10.3389/fnut.2020.00140S1167Fu, Y., Sarkar, P., Bhunia, A. K., & Yao, Y. (2016). Delivery systems of antimicrobial compounds to food. Trends in Food Science & Technology, 57, 165-177. doi:10.1016/j.tifs.2016.09.013Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology, 10(2), 52-68. doi:10.1016/s0924-2244(99)00019-9Arena, U., & Di Gregorio, F. (2014). A waste management planning based on substance flow analysis. Resources, Conservation and Recycling, 85, 54-66. doi:10.1016/j.resconrec.2013.05.008Kumar, G., Ponnusamy, V. K., Bhosale, R. R., Shobana, S., Yoon, J.-J., Bhatia, S. K., … Kim, S.-H. (2019). A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology, 287, 121427. doi:10.1016/j.biortech.2019.121427Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., & Zhang, Y. (2020). (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production, 254, 120138. doi:10.1016/j.jclepro.2020.120138Mannina, G., Presti, D., Montiel-Jarillo, G., Carrera, J., & Suárez-Ojeda, M. E. (2020). Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresource Technology, 297, 122478. doi:10.1016/j.biortech.2019.122478Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) — A review. International Journal of Biological Macromolecules, 131, 536-547. doi:10.1016/j.ijbiomac.2019.03.099Nielsen, C., Rahman, A., Rehman, A. U., Walsh, M. K., & Miller, C. D. (2017). Food waste conversion to microbial polyhydroxyalkanoates. Microbial Biotechnology, 10(6), 1338-1352. doi:10.1111/1751-7915.12776Bhatia, S. K., Gurav, R., Choi, T.-R., Jung, H.-R., Yang, S.-Y., Moon, Y.-M., … Yang, Y.-H. (2019). Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresource Technology, 271, 306-315. doi:10.1016/j.biortech.2018.09.122Bhatia, S. K., Shim, Y.-H., Jeon, J.-M., Brigham, C. J., Kim, Y.-H., Kim, H.-J., … Yang, Y.-H. (2015). Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess and Biosystems Engineering, 38(8), 1479-1484. doi:10.1007/s00449-015-1390-yPark, Y.-L., Bhatia, S. K., Gurav, R., Choi, T.-R., Kim, H. J., Song, H.-S., … Yang, Y.-H. (2020). Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. International Journal of Biological Macromolecules, 154, 929-936. doi:10.1016/j.ijbiomac.2020.03.129Hong, J.-W., Song, H.-S., Moon, Y.-M., Hong, Y.-G., Bhatia, S. K., Jung, H.-R., … Yang, Y.-H. (2019). Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and Biosystems Engineering, 42(4), 603-610. doi:10.1007/s00449-018-02066-6Vu, D. H., Åkesson, D., Taherzadeh, M. J., & Ferreira, J. A. (2020). Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview. Bioresource Technology, 298, 122393. doi:10.1016/j.biortech.2019.122393Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192, 271-282. doi:10.1016/j.micres.2016.07.010Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002Vahabi, H., Rohani Rad, E., Parpaite, T., Langlois, V., & Saeb, M. R. (2019). Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)? Progress in Organic Coatings, 133, 85-89. doi:10.1016/j.porgcoat.2019.04.044Jung, H.-R., Jeon, J.-M., Yi, D.-H., Song, H.-S., Yang, S.-Y., Choi, T.-R., … Yang, Y.-H. (2019). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha. International Journal of Biological Macromolecules, 138, 370-378. doi:10.1016/j.ijbiomac.2019.07.091Rehm, B. H. A., & Steinbüchel, A. (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecules, 25(1-3), 3-19. doi:10.1016/s0141-8130(99)00010-0Tarawat, S., Incharoensakdi, A., & Monshupanee, T. (2020). Cyanobacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from carbon dioxide or a single organic substrate: improved polymer elongation with an extremely high 3-hydroxyvalerate mole proportion. Journal of Applied Phycology, 32(2), 1095-1102. doi:10.1007/s10811-020-02040-4Bhatia, S. K., Yoon, J.-J., Kim, H.-J., Hong, J. W., Gi Hong, Y., Song, H.-S., … Yang, Y.-H. (2018). Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresource Technology, 257, 92-101. doi:10.1016/j.biortech.2018.02.056Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2009). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied Microbiology and Biotechnology, 85(6), 1687-1696. doi:10.1007/s00253-009-2397-6Cinelli, P., Seggiani, M., Mallegni, N., Gigante, V., & Lazzeri, A. (2019). Processability and Degradability of PHA-Based Composites in Terrestrial Environments. International Journal of Molecular Sciences, 20(2), 284. doi:10.3390/ijms20020284Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115Radusin, T., Torres-Giner, S., Stupar, A., Ristic, I., Miletic, A., Novakovic, A., & Lagaron, J. M. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life, 21, 100357. doi:10.1016/j.fpsl.2019.100357Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., … Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. doi:10.1016/j.micpath.2019.103580Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316. doi:10.1046/j.1365-2672.2000.00969.xJia, C., Cao, D., Ji, S., Zhang, X., & Muhoza, B. (2020). Tannic acid-assisted cross-linked nanoparticles as a delivery system of eugenol: The characterization, thermal degradation and antioxidant properties. Food Hydrocolloids, 104, 105717. doi:10.1016/j.foodhyd.2020.105717Kim, J., Marshall, M. R., & Wei, C. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43(11), 2839-2845. doi:10.1021/jf00059a013Walsh, S. E., Maillard, J.-Y., Russell, A. D., Catrenich, C. E., Charbonneau, D. L., & Bartolo, R. G. (2003). Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. Journal of Applied Microbiology, 94(2), 240-247. doi:10.1046/j.1365-2672.2003.01825.xELGAYYAR, M., DRAUGHON, F. A., GOLDEN, D. A., & MOUNT, J. R. (2001). Antimicrobial Activity of Essential Oils from Plants against Selected Pathogenic and Saprophytic Microorganisms. Journal of Food Protection, 64(7), 1019-1024. doi:10.4315/0362-028x-64.7.1019Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107-115. doi:10.1016/j.jep.2010.04.025Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423-435. doi:10.1038/nrmicro2333Khameneh, B., Iranshahy, M., Soheili, V., & Fazly Bazzaz, B. S. (2019). Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1). doi:10.1186/s13756-019-0559-6Li, Y., Dong, Q., Chen, J., & Li, L. (2020). Effects of coaxial electrospun eugenol loaded core-sheath PVP/shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biology and Technology, 159, 111028. doi:10.1016/j.postharvbio.2019.111028Celebioglu, A., Yildiz, Z. I., & Uyar, T. (2018). Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability. Journal of Agricultural and Food Chemistry, 66(2), 457-466. doi:10.1021/acs.jafc.7b04312Soares, R. M. D., Siqueira, N. M., Prabhakaram, M. P., & Ramakrishna, S. (2018). Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering: C, 92, 969-982. doi:10.1016/j.msec.2018.08.004Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Marangoni Júnior, L., Oliveira, L. M. de, Bócoli, P. F. J., Cristianini, M., Padula, M., & Anjos, C. A. R. (2020). Morphological, thermal and mechanical properties of polyamide and ethylene vinyl alcohol multilayer flexible packaging after high-pressure processing. Journal of Food Engineering, 276, 109913. doi:10.1016/j.jfoodeng.2020.109913Gómez Ramos, M. J., Lozano, A., & Fernández-Alba, A. R. (2019). High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice. Talanta, 191, 180-192. doi:10.1016/j.talanta.2018.08.023Wang, L., Chen, C., Wang, J., Gardner, D. J., & Tajvidi, M. (2020). Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packaging and Shelf Life, 23, 100464. doi:10.1016/j.fpsl.2020.100464Garrido-López, Á., & Tena, M. T. (2010). Study of multilayer packaging delamination mechanisms using different surface analysis techniques. Applied Surface Science, 256(12), 3799-3805. doi:10.1016/j.apsusc.2010.01.029Úbeda, S., Aznar, M., Vera, P., Nerín, C., Henríquez, L., Taborda, L., & Restrepo, C. (2017). Overall and specific migration from multilayer high barrier food contact materials – kinetic study of cyclic polyester oligomers migration. Food Additives & Contaminants: Part A, 34(10), 1784-1794. doi:10.1080/19440049.2017.1346390Anukiruthika, T., Sethupathy, P., Wilson, A., Kashampur, K., Moses, J. A., & Anandharamakrishnan, C. (2020). Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1156-1186. doi:10.1111/1541-4337.12556Mount, E. (2010). Coextrusion equipment for multilayer flat films and sheets. Multilayer Flexible Packaging, 75-95. doi:10.1016/b978-0-8155-2021-4.10006-1Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2013). High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocolloids, 32(1), 106-114. doi:10.1016/j.foodhyd.2012.12.007Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022Cherpinski, A., Torres‐Giner, S., Cabedo, L., Méndez, J. A., & Lagaron, J. M. (2017). Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber‐based food packaging applications. Journal of Applied Polymer Science, 135(24), 45501. doi:10.1002/app.45501Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-zQuiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533Akinalan Balik, B., Argin, S., Lagaron, J. M., & Torres-Giner, S. (2019). Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Applied Sciences, 9(23), 5136. doi:10.3390/app9235136Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Castro-Mayorga, J. L., Fabra, M. J., Pourrahimi, A. M., Olsson, R. T., & Lagaron, J. M. (2017). The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food and Bioproducts Processing, 101, 32-44. doi:10.1016/j.fbp.2016.10.007Cerqueira, M. A., Fabra, M. J., Castro-Mayorga, J. L., Bourbon, A. I., Pastrana, L. M., Vicente, A. A., & Lagaron, J. M. (2016). Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food and Bioprocess Technology, 9(11), 1874-1884. doi:10.1007/s11947-016-1772-4Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601-614. doi:10.1016/j.foodhyd.2007.02.005Torres‐Giner, S., Ocio, M. J., & Lagaron, J. M. (2008). Development of Active Antimicrobial Fiber‐Based Chitosan Polysaccharide Nanostructures using Electrospinning. Engineering in Life Sciences, 8(3), 303-314. doi:10.1002/elsc.200700066Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. doi:10.1016/j.ijbiomac.2014.11.046Haghighi, H., Biard, S., Bigi, F., De Leo, R., Bedin, E., Pfeifer, F., … Pulvirenti, A. (2019). Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocolloids, 95, 33-42. doi:10.1016/j.foodhyd.2019.04.019Shao, Y., Wu, C., Wu, T., Li, Y., Chen, S., Yuan, C., & Hu, Y. (2018). Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydrate Polymers, 193, 144-152. doi:10.1016/j.carbpol.2018.03.101Piletti, R., Bugiereck, A. M., Pereira, A. T., Gussati, E., Dal Magro, J., Mello, J. M. M., … Fiori, M. A. (2017). Microencapsulation of eugenol molecules by β-cyclodextrine as a thermal protection method of antibacterial action. Materials Science and Engineering: C, 75, 259-271. doi:10.1016/j.msec.2017.02.075Da Silva, C. G., Kano, F. S., & dos Santos Rosa, D. (2019). Thermal stability of the PBAT biofilms with cellulose nanostructures/essential oils for active packaging. Journal of Thermal Analysis and Calorimetry, 138(4), 2375-2386. doi:10.1007/s10973-019-08190-zFigueroa-Lopez, K. J., Enescu, D., Torres-Giner, S., Cabedo, L., Cerqueira, M. A., Pastrana, L., … Lagaron, J. M. (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing or

    Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications

    Full text link
    [EN] This paper reports on the development and characterization of oxygen scavenging films made of poly(3-hydroxybutyrate) (PHB) containing palladium nanoparticles (PdNPs) prepared by electrospinning followed by annealing treatment at 160 degrees C. The PdNPs were modified with the intention to optimize their dispersion and distribution in PHB by means of two different surfactants permitted for food contact applications, i.e., hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS). Analysis of the morphology and characterization of the chemical, thermal, mechanical, and water and limonene vapor barrier properties and the oxygen scavenging capacity of the various PHB materials were carried out. From the results, it was seen that a better dispersion and distribution was obtained using CTAB as the dispersing aid. As a result, the PHB/PdNP nanocomposites containing CTAB provided also the best oxygen scavenging performance. These films offer a significant potential as new active coating or interlayer systems for application in the design of novel active food packaging structures.This research has received funding from the Spanish Ministry of Economy and Competitiveness (MINECO, project AGL2015-63855-C2-1-R) and the EU H2020 project YPACK (reference number 773872). A.C. and S.T.-G. would like to thank the Brazilian Council for Scientific and Technological Development (CNPq) and MINECO for her predoctoral grant (205955/2014-2) and his Juan de la Cierva contract (IJCI-2016-29675), respectively.Cherpinski, A.; Gozutok, M.; Turkoglu Sasmazel, H.; Torres-Giner, S.; Lagaron, JM. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials. 8(7):1-19. https://doi.org/10.3390/nano8070469S11987Puglia, D., Fortunati, E., D’Amico, D. A., Manfredi, L. B., Cyras, V. P., & Kenny, J. M. (2014). Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 99, 127-135. doi:10.1016/j.polymdegradstab.2013.11.013Ma, P., Xu, P., Chen, M., Dong, W., Cai, X., Schmit, P., … Lemstra, P. J. (2014). Structure–property relationships of reactively compatibilized PHB/EVA/starch blends. Carbohydrate Polymers, 108, 299-306. doi:10.1016/j.carbpol.2014.02.058Molinaro, S., Cruz Romero, M., Boaro, M., Sensidoni, A., Lagazio, C., Morris, M., & Kerry, J. (2013). Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. Journal of Food Engineering, 117(1), 113-123. doi:10.1016/j.jfoodeng.2013.01.021Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019Bittmann, B., Bouza, R., Barral, L., Diez, J., & Ramirez, C. (2013). Poly(3-hydroxybutyrate-co -3-hydroxyvalerate)/clay nanocomposites for replacement of mineral oil based materials. Polymer Composites, 34(7), 1033-1040. doi:10.1002/pc.22510Castro-Mayorga, J. L., Fabra, M. J., & Lagaron, J. M. (2016). Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innovative Food Science & Emerging Technologies, 33, 524-533. doi:10.1016/j.ifset.2015.10.019Bartczak, Z., Galeski, A., Kowalczuk, M., Sobota, M., & Malinowski, R. (2013). Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal, 49(11), 3630-3641. doi:10.1016/j.eurpolymj.2013.07.033Furukawa, T., Sato, H., Murakami, R., Zhang, J., Duan, Y.-X., Noda, I., … Ozaki, Y. (2005). Structure, Dispersibility, and Crystallinity of Poly(hydroxybutyrate)/Poly(l-lactic acid) Blends Studied by FT-IR Microspectroscopy and Differential Scanning Calorimetry. Macromolecules, 38(15), 6445-6454. doi:10.1021/ma0504668Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. doi:10.1002/adv.20235Yildirim, S., Röcker, B., Rüegg, N., & Lohwasser, W. (2015). Development of Palladium-based Oxygen Scavenger: Optimization of Substrate and Palladium Layer Thickness. Packaging Technology and Science, 28(8), 710-718. doi:10.1002/pts.2134Cernohorsky, O., Zdansky, K., Zavadil, J., Kacerovsky, P., & Piksova, K. (2011). Palladium nanoparticles on InP for hydrogen detection. Nanoscale Research Letters, 6(1). doi:10.1186/1556-276x-6-410Damaj, Z., Joly, C., & Guillon, E. (2014). Toward New Polymeric Oxygen Scavenging Systems: Formation of Poly(vinyl alcohol) Oxygen Scavenger Film. Packaging Technology and Science, 28(4), 293-302. doi:10.1002/pts.2112Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Echegoyen, Y., Fabra, M. J., Castro-Mayorga, J. L., Cherpinski, A., & Lagaron, J. M. (2017). High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint. Trends in Food Science & Technology, 60, 71-79. doi:10.1016/j.tifs.2016.10.019Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103-S112. doi:10.1016/j.tifs.2008.09.011Kundu, S. (2013). A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies. J. Mater. Chem. C, 1(4), 831-842. doi:10.1039/c2tc00315eMayer, A., & Antonietti, M. (1998). Investigation of polymer-protected noble metal nanoparticles by transmission electron microscopy: control of particle morphology and shape. Colloid & Polymer Science, 276(9), 769-779. doi:10.1007/s003960050309Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115Tekmen, C., Tsunekawa, Y., & Nakanishi, H. (2010). Electrospinning of carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles. Journal of Materials Processing Technology, 210(3), 451-455. doi:10.1016/j.jmatprotec.2009.10.006Sainudeen, S. S., Asok, L. B., Varghese, A., Nair, A. S., & Krishnan, G. (2017). Surfactant-driven direct synthesis of a hierarchical hollow MgO nanofiber–nanoparticle composite by electrospinning. RSC Advances, 7(56), 35160-35168. doi:10.1039/c7ra05812hSakai, S., Kawakami, K., & Taya, M. (2012). Controlling the Diameters of Silica Nanofibers Obtained by Sol–Gel/Electrospinning Methods. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 45(6), 436-440. doi:10.1252/jcej.11we249Castro-Mayorga, J., Fabra, M., Cabedo, L., & Lagaron, J. (2016). On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials, 7(1), 4. doi:10.3390/nano7010004Martínez-Abad, A., Sanchez, G., Lagaron, J. M., & Ocio, M. J. (2012). Influence of speciation in the release profiles and antimicrobial performance of electrospun ethylene vinyl alcohol copolymer (EVOH) fibers containing ionic silver ions and silver nanoparticles. Colloid and Polymer Science, 291(6), 1381-1392. doi:10.1007/s00396-012-2870-0Shaukat, M. S., Zulfiqar, S., & Sarwar, M. I. (2015). Incorporation of palladium nanoparticles into aromatic polyamide/clay nanocomposites through facile dry route. Polymer Science Series B, 57(4), 380-386. doi:10.1134/s1560090415040120Yeo, S. Y., Tan, W. L., Abu Bakar, M., & Ismail, J. (2010). Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: Thermal stability and kinetic analysis of thermal degradation. Polymer Degradation and Stability, 95(8), 1299-1304. doi:10.1016/j.polymdegradstab.2010.02.025Díez-Pascual, A., & Díez-Vicente, A. (2014). Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences, 15(6), 10950-10973. doi:10.3390/ijms150610950Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Primeau, N., Vautey, C., & Langlet, M. (1997). The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study. Thin Solid Films, 310(1-2), 47-56. doi:10.1016/s0040-6090(97)00340-4Pachekoski, W. M., Dalmolin, C., & Agnelli, J. A. M. (2012). The influence of the industrial processing on the degradation of poly(hidroxybutyrate) - PHB. Materials Research, 16(2), 237-332. doi:10.1590/s1516-14392012005000180Mottin, A. C., Ayres, E., Oréfice, R. L., & Câmara, J. J. D. (2016). What Changes in Poly(3-Hydroxybutyrate) (PHB) When Processed as Electrospun Nanofibers or Thermo-Compression Molded Film? Materials Research, 19(1), 57-66. doi:10.1590/1980-5373-mr-2015-0280Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 45(4), 967-984. doi:10.1016/j.eurpolymj.2009.01.027Terada, M., & Marchessault, R. H. (1999). Determination of solubility parameters for poly(3-hydroxyalkanoates). International Journal of Biological Macromolecules, 25(1-3), 207-215. doi:10.1016/s0141-8130(99)00036-7Tan, B., & Thomas, N. L. (2016). A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. Journal of Membrane Science, 514, 595-612. doi:10.1016/j.memsci.2016.05.026Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626. doi:10.1080/19440049.2010.506601Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327-335. doi:10.1016/j.foodhyd.2013.04.002Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. doi:10.1016/j.carbpol.2007.05.041Nyberg, C., & Tengstål, C. G. (1984). Adsorption and reaction of water, oxygen, and hydrogen on Pd(100): Identification of adsorbed hydroxyl and implications for the catalytic H2–O2 reaction. The Journal of Chemical Physics, 80(7), 3463-3468. doi:10.1063/1.447102Singh, L. P., Bhattacharyya, S. K., Mishra, G., & Ahalawat, S. (2011). Functional role of cationic surfactant to control the nano size of silica powder. Applied Nanoscience, 1(3), 117-122. doi:10.1007/s13204-011-0016-1Nestorson, A., Neoh, K. G., Kang, E. T., Järnström, L., & Leufvén, A. (2008). Enzyme immobilization in latex dispersion coatings for active food packaging. Packaging Technology and Science, 21(4), 193-205. doi:10.1002/pts.79

    The impact of electrospun films of poly(epsilon-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A

    Full text link
    [EN] This research study originally reports the preparation and characterization of electrospun films based on poly(epsilon-caprolactone) (PCL) with high histamine-binding capacity. To this end, submicron PCL fibers filled with nanostructured zeolite or silica (SiO2) microparticles in the 5-20 wt% range were first prepared by solution electrospinning. The resultant electrospun composite fiber mats were thereafter thermally post-treated at 55 degrees C to successfully develop contact-transparent films with reduced porosity and improved mechanical strength. The capacity of the developed composite films to entrap histamine was evaluated in vitro by the culture media method using Staphylococcus aureus (S. aureus) and Salmonella Paratyphi A (S. Paratyphi A) foodborne bacteria. Both electrospun zeolite- and SiO2-containing PCL films exhibited high histamine-binding capacity, being more effective for S. aureus. The histamine entrapment performance was significantly higher for the PCL films filled with zeolite due to the enhanced porous structure and more optimal adsorption selectivity of this inorganic filler. The here-developed electrospun composite films can be applied as novel active-scavenging packaging materials to entrap heat-stable histamine and other biogenic amines released from fish and fishery products.This research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) program number AGL2015-63855-C2-1-R and by the EU H2020 YPACK project (reference number 773872). The authors also thank the Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (TAGEM) and Central Fisheries Research Institute SUMAE) for funding support through the projects TAGEM/HSGYAD/14/A05/P05/70 and TAGEM/HSGYAD/17/A03/P05/133. Figueroa Lopez is a recipient of a Santiago Grisolia (GRISOLIAP/2017/101) grant of the Generalitat Valenciana (GVA) and Torres-Giner is on a Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) from MICIU.Alp-Erbay, E.; Figueroa-López, KJ.; Lagaron, JM.; Çaglak, E.; Torres-Giner, S. (2019). The impact of electrospun films of poly(epsilon-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A. Food Packaging and Shelf Life. 22:1-13. https://doi.org/10.1016/j.fpsl.2019.100414S11322Alp Erbay, E., Dağtekin, B. B. (Gözü), Türe, M., Yeşilsu, A. F., & Torres-Giner, S. (2017). Quality improvement of rainbow trout fillets by whey protein isolate coatings containing electrospun poly(ε-caprolactone) nanofibers with Urtica dioica L. extract during storage. LWT, 78, 340-351. doi:10.1016/j.lwt.2017.01.002Alp-Erbay, E., Yeşi̇lsu, A. F., & Türe, M. (2019). Fish Gelatin Antimicrobial Electrospun Nanofibers for Active Food-Packaging Applications. Journal of Nano Research, 56, 80-97. doi:10.4028/www.scientific.net/jnanor.56.80Averous, L. (2000). Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41(11), 4157-4167. doi:10.1016/s0032-3861(99)00636-9Beachley, V., & Wen, X. (2009). Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 29(3), 663-668. doi:10.1016/j.msec.2008.10.037Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B., & Thomas, T. L. (1956). Crystalline Zeolites. I. The Properties of a New Synthetic Zeolite, Type A. Journal of the American Chemical Society, 78(23), 5963-5972. doi:10.1021/ja01604a001Chang, S.-C., Kung, H.-F., Chen, H.-C., Lin, C.-S., & Tsai, Y.-H. (2008). Determination of histamine and bacterial isolation in swordfish fillets (Xiphias gladius) implicated in a food borne poisoning. Food Control, 19(1), 16-21. doi:10.1016/j.foodcont.2007.01.005Croisier, F., Duwez, A.-S., Jérôme, C., Léonard, A. F., van der Werf, K. O., Dijkstra, P. J., & Bennink, M. L. (2012). Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 8(1), 218-224. doi:10.1016/j.actbio.2011.08.015Deitzel, J. ., Kleinmeyer, J., Harris, D., & Beck Tan, N. . (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272. doi:10.1016/s0032-3861(00)00250-0Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Forouharshad, M., Saligheh, O., Arasteh, R., & Farsani, R. E. (2010). Manufacture and Characterization of Poly (butylene terephthalate) Nanofibers by Electrospinning. Journal of Macromolecular Science, Part B, 49(4), 833-842. doi:10.1080/00222341003609377GENG, X., KWON, O., & JANG, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. doi:10.1016/j.biomaterials.2005.01.066Geornaras, I., Dykes, G. A., & Holy, A. (1995). Biogenic amine formation by poultry-associated spoilage and pathogenic bacteria. Letters in Applied Microbiology, 21(3), 164-166. doi:10.1111/j.1472-765x.1995.tb01032.xGokdogan, S., Özogul, Y., Kuley, E., Özogul, F., Kacar, C., & Ucar, Y. (2012). The Influences of Natural Zeolite (cliptinolite) on Ammonia and Biogenic Amine Formation by Foodborne Pathogen. Journal of Food Science, 77(8), M452-M457. doi:10.1111/j.1750-3841.2012.02822.xHanim, S. A. M., Malek, N. A. N. N., & Ibrahim, Z. (2016). Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity. Applied Surface Science, 360, 121-130. doi:10.1016/j.apsusc.2015.11.010HERNÁNDEZ-HERRERO, M. M., ROIG-SAGUÉS, A. X., RODRÍGUEZ-JEREZ, J. J., & MORA-VENTURA, M. T. (1999). Halotolerant and Halophilic Histamine-Forming Bacteria Isolated during the Ripening of Salted Anchovies (Engraulis encrasicholus). Journal of Food Protection, 62(5), 509-514. doi:10.4315/0362-028x-62.5.509HIEN, T. T. T., SHIRAI, T., & FUJI, M. (2012). Mechanical modification of silica powders. Journal of the Ceramic Society of Japan, 120(1406), 429-435. doi:10.2109/jcersj2.120.429Hungerford, J. M. (2010). Scombroid poisoning: A review. Toxicon, 56(2), 231-243. doi:10.1016/j.toxicon.2010.02.006Huwig, A., Freimund, S., Käppeli, O., & Dutler, H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122(2), 179-188. doi:10.1016/s0378-4274(01)00360-5Hwang, S. Y., Yoon, W. J., Yun, S. H., Yoo, E. S., Kim, T. H., & Im, S. S. (2013). Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromolecular Research, 21(11), 1281-1288. doi:10.1007/s13233-013-1178-3Jin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724-734. doi:10.1016/j.biomaterials.2012.10.026Kickelbick, G. (2003). Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science, 28(1), 83-114. doi:10.1016/s0079-6700(02)00019-9Kim, G. H., Han, H., Park, J. H., & Kim, W. D. (2007). An applicable electrospinning process for fabricating a mechanically improved nanofiber mat. Polymer Engineering & Science, 47(5), 707-712. doi:10.1002/pen.20744Kimura, B. (2001). Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce. International Journal of Food Microbiology, 70(1-2), 71-77. doi:10.1016/s0168-1605(01)00514-1Klausen, N. K., & Huss, H. H. (1987). Growth and histamine production by Morganella morganii under various temperature conditions. International Journal of Food Microbiology, 5(2), 147-156. doi:10.1016/0168-1605(87)90032-8KROKOWICZ, L., TOMCZAK, H., BOBKIEWICZ, A., MACKIEWICZ, J., MARCINIAK, R., DREWS, M., & BANASIEWICZ, T. (2015). In vitro studies of antibacterial and antifungal wound dressings comprising H2TiO3 and SiO2 nanoparticles. Polish Journal of Microbiology, 64(2), 137-142. doi:10.33073/pjm-2015-020Kuley, E., Durmus, M., Balikci, E., Ucar, Y., Regenstein, J. M., & Özoğul, F. (2016). Fish spoilage bacterial growth and their biogenic amine accumulation: Inhibitory effects of olive by-products. International Journal of Food Properties, 20(5), 1029-1043. doi:10.1080/10942912.2016.1193516Kuley, E., & Özogul, F. (2011). Synergistic and antagonistic effect of lactic acid bacteria on tyramine production by food-borne pathogenic bacteria in tyrosine decarboxylase broth. Food Chemistry, 127(3), 1163-1168. doi:10.1016/j.foodchem.2011.01.118Kung, H.-F., Wang, T.-Y., Huang, Y.-R., Lin, C.-S., Wu, W.-S., Lin, C.-M., & Tsai, Y.-H. (2009). Isolation and identification of histamine-forming bacteria in tuna sandwiches. Food Control, 20(11), 1013-1017. doi:10.1016/j.foodcont.2008.12.001Lakshmanan, R., Jeya Shakila, R., & Jeyasekaran, G. (2002). Survival of amine-forming bacteria during the ice storage of fish and shrimp. Food Microbiology, 19(6), 617-625. doi:10.1006/fmic.2002.0481Landete, J. M., De Las Rivas, B., Marcobal, A., & Muñoz, R. (2008). Updated Molecular Knowledge about Histamine Biosynthesis by Bacteria. Critical Reviews in Food Science and Nutrition, 48(8), 697-714. doi:10.1080/10408390701639041Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173Lehane, L., & Olley, J. (2000). Histamine fish poisoning revisited. International Journal of Food Microbiology, 58(1-2), 1-37. doi:10.1016/s0168-1605(00)00296-8Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719Li, M., Li, G., Jiang, J., Tao, Y., & Mai, K. (2013). Preparation, antimicrobial, crystallization and mechanical properties of nano-ZnO-supported zeolite filled polypropylene random copolymer composites. Composites Science and Technology, 81, 30-36. doi:10.1016/j.compscitech.2013.03.020LÓPEZ-SABATER, E. I., RODRÍGUEZ-JEREZ, J. J., ROIG-SAGUÉS, A. X., & TERESA MORA-VENTURA, M. A. (1994). Bacteriological Quality of Tuna Fish (Thunnus thynnus) Destined for Canning: Effect of Tuna Handling on Presence of Histidine Decarboxylase Bacteria and Histamine Level. Journal of Food Protection, 57(4), 318-323. doi:10.4315/0362-028x-57.4.318Mehrasa, M., Anarkoli, A. O., Rafienia, M., Ghasemi, N., Davary, N., Bonakdar, S., … Salamat, M. R. (2016). Incorporation of zeolite and silica nanoparticles into electrospun PVA/collagen nanofibrous scaffolds: The influence on the physical, chemical properties and cell behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(9), 457-465. doi:10.1080/00914037.2015.1129958Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227Mohamed, R. M., & Yusoh, K. (2015). A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 1134, 249-255. doi:10.4028/www.scientific.net/amr.1134.249Murray, C. K., Hobbs, G., & Gilbert, R. J. (1982). Scombrotoxin and scombrotoxin-like poisoning from canned fish. Journal of Hygiene, 88(2), 215-220. doi:10.1017/s002217240007008xNaila, A., Flint, S., Fletcher, G., Bremer, P., & Meerdink, G. (2010). Control of Biogenic Amines in Food-Existing and Emerging Approaches. Journal of Food Science, 75(7), R139-R150. doi:10.1111/j.1750-3841.2010.01774.xNei, D. (2014). Evaluation of Non-bacterial factors contributing to histamine accumulation in fish fillets. Food Control, 35(1), 142-145. doi:10.1016/j.foodcont.2013.06.037Özogul, F., Kacar, Ç., & Hamed, I. (2015). Inhibition effects of carvacrol on biogenic amines formation by common food-borne pathogens in histidine decarboxylase broth. LWT - Food Science and Technology, 64(1), 50-55. doi:10.1016/j.lwt.2015.05.027Pardo-Figuerez, M., López-Córdoba, A., Torres-Giner, S., & Lagaron, J. (2018). Superhydrophobic Bio-Coating Made by Co-Continuous Electrospinning and Electrospraying on Polyethylene Terephthalate Films Proposed as Easy Emptying Transparent Food Packaging. Coatings, 8(10), 364. doi:10.3390/coatings8100364Quiles-Carrillo, L., Montanes, N., Lagaron, J., Balart, R., & Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences, 9(3), 533. doi:10.3390/app9030533Sánchez-Clemente, R., Igeño, M. I., Población, A. G., Guijo, M. I., Merchán, F., & Blasco, R. (2018). Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. Proceedings, 2(20), 1297. doi:10.3390/proceedings2201297Satomi, M. (2016). Effect of Histamine-producing Bacteria on Fermented Fishery Products. Food Science and Technology Research, 22(1), 1-21. doi:10.3136/fstr.22.1Shahabadi, S. M. S., Kheradmand, A., Montazeri, V., & Ziaee, H. (2015). Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polymer Science Series A, 57(2), 155-167. doi:10.1134/s0965545x15020157Shalaby, A. R. (1996). Significance of biogenic amines to food safety and human health. Food Research International, 29(7), 675-690. doi:10.1016/s0963-9969(96)00066-xAnalysis of Heavy Metal Toxic Ions by Adsorption onto Amino-functionalized Ordered Mesoporous Silica. (2007). Bulletin of the Korean Chemical Society, 28(11), 1985-1992. doi:10.5012/bkcs.2007.28.11.1985Simon, S. S., & Sanjeev, S. (2007). Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish processing factory workers. Food Control, 18(12), 1565-1568. doi:10.1016/j.foodcont.2006.12.007Sridhar, R., Ravanan, S., Venugopal, J. R., Sundarrajan, S., Pliszka, D., Sivasubramanian, S., … Ramakrishna, S. (2014). Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer:in vitroefficacy evaluation. Journal of Biomaterials Science, Polymer Edition, 25(10), 985-998. doi:10.1080/09205063.2014.917039STRATTON, J. E., HUTKINS, R. W., & TAYLOR, S. L. (1991). Biogenic Amines in Cheese and other Fermented Foods: A Review. Journal of Food Protection, 54(6), 460-470. doi:10.4315/0362-028x-54.6.460Tapingkae, W., Parkin, K. L., Tanasupawat, S., Kruenate, J., Benjakul, S., & Visessanguan, W. (2010). Whole cell immobilisation of Natrinema gari BCC 24369 for histamine degradation. Food Chemistry, 120(3), 842-849. doi:10.1016/j.foodchem.2009.11.025Tarus, B., Fadel, N., Al-Oufy, A., & El-Messiry, M. (2016). Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Engineering Journal, 55(3), 2975-2984. doi:10.1016/j.aej.2016.04.025Torres-Giner, S., Echegoyen, Y., Teruel-Juanes, R., Badia, J., Ribes-Greus, A., & Lagaron, J. (2018). Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications. Nanomaterials, 8(10), 745. doi:10.3390/nano8100745Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11-24. doi:10.1016/j.cej.2009.10.029Wang, X., Zhao, H., Turng, L.-S., & Li, Q. (2013). Crystalline Morphology of Electrospun Poly(ε-caprolactone) (PCL) Nanofibers. Industrial & Engineering Chemistry Research, 52(13), 4939-4949. doi:10.1021/ie302185eWoodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Yantasee, W., Rutledge, R. D., Chouyyok, W., Sukwarotwat, V., Orr, G., Warner, C. L., … Addleman, R. S. (2010). Functionalized Nanoporous Silica for the Removal of Heavy Metals from Biological Systems: Adsorption and Application. ACS Applied Materials & Interfaces, 2(10), 2749-2758. doi:10.1021/am100616bYao, G., Lei, J., Zhang, W., Yu, C., Sun, Z., Zheng, S., & Komarneni, S. (2018). Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus. Environmental Science and Pollution Research, 26(3), 2782-2793. doi:10.1007/s11356-018-3750-zYuzay, I. E., Auras, R., Soto-Valdez, H., & Selke, S. (2010). Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polymer Degradation and Stability, 95(9), 1769-1777. doi:10.1016/j.polymdegradstab.2010.05.011Zarei, M., Maktabi, S., & Ghorbanpour, M. (2012). Prevalence of Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. in Seafood Products Using Multiplex Polymerase Chain Reaction. Foodborne Pathogens and Disease, 9(2), 108-112. doi:10.1089/fpd.2011.098

    Development and Characterization of Electrospun Biopapers of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived from Cheese Whey with Varying 3-Hydroxyvalerate Contents

    Get PDF
    [EN] In the present study, three different newly developed copolymers of poly(3-hydroxybutyrate-co-3-hydroxyval-erate) (PHBV) with 20, 40, and 60 mol % contents in 3-hydroxyvalerate (3HV) were produced by the biotechnological process of mixed microbial cultures (MMCs) using cheese whey (CW), a by-product from the dairy industry, as feedstock. The CW-derived PHBV copolyesters were first purified and then processed by solution electrospinning, yielding fibers of approximately 2 mu m in cross-section in all cases. The resultant electrospun PHBV mats were, thereafter, post-processed by annealing at different temperatures, below their maximum of melting, selected according to their 3HV content in order to obtain continuous films based on coalesced fibers, so-called biopapers. The resultant PHBV films were characterized in terms of their morphology, crystallinity, and mechanical and barrier properties to assess their potential application in food packaging. The CW-derived PHBV biopapers showed high contact transparency but a slightly yellow color. The fibers of the 20 mol % 3HV copolymer were seen to contain mostly poly(3-hydroxybutyrate) (PHB) crystals, the fibers of the 40 mol % 3HV copolymer a mixture of PHB and poly(3-hydroxyvalerate) (PHV) crystals and lowest crystallinity, and the fibers of the 60 mol % 3HV sample were mostly made of PHV crystals. To understand the interfiber coalesce process undergone by the materials during annealing, the crystalline morphology was also assessed by variable-temperature both combined small-angle and wide-angle X-ray scattering synchrotron and Fourier transform infrared experiments. From these experiments and, different from previously reported biopapers with lower 3HV contents, all samples were inferred to have a surface energy reduction mechanism for interfiber coalescence during annealing, which is thought to be activated by a temperature-induced decrease in molecular order. Due to their reduced crystallinity and molecular order, the CW-derived PHBV biopapers, especially the 40 mol % 3HV sample, were found to be more ductile and tougher. In terms of barrier properties, the three copolymers performed similarly to water and limonene, but to oxygen, the 40 mol % sample showed the highest relative permeability. Overall, the materials developed, which are compatible with the Circular Bioeconomy organic recycling strategy, can have an excellent potential as barrier interlayers or coatings of application interest in food packaging.This research work was funded by the H2020 EU project YPACK (reference number 773872) and by the Spanish Ministry of Science and Innovation (MICI) project RTI2018-097249-B-C21. B.M.-R. would like to acknowledge the MICI for her FPI fellowship (BES-2016-077972) and S.T.-G. for his MICI Juan de la Cierva-Incorporacion contract (IJCI-2016-29675). The ALBA Synchrotron is also acknowledged for the funding received through the project "Time-resolved Combined Wide-and Small-angle X-ray Scattering Characterization as a Function of Temperature of Electrospun Polyhydroxyalkanoates Derived from Biowaste" (2018022619). The authors would also like to thank the Unidad Asociada IATA(CSIC)-UJI in "Plastics Technology".Meléndez-Rodríguez, B.; Reis, MAM.; Carvalheira, M.; Sammon, C.; Cabedo, L.; Torres-Giner, S.; Lagaron, JM. (2021). Development and Characterization of Electrospun Biopapers of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived from Cheese Whey with Varying 3-Hydroxyvalerate Contents. Biomacromolecules. 22(7):2935-2953. https://doi.org/10.1021/acs.biomac.1c00353S2935295322

    Organocatalyzed closed-loop chemical recycling of thermo-compressed films of poly(ethylene furanoate)

    Full text link
    [EN] Monomers obtained from renewable feedstocks have emerged as a sustainable alternative to petroleum derived polymers. One of the biomass derived polyesters that has recently been gaining attention as an alternative to petrochemical polyethylene terephtalate (PET) for food and beverage packaging applications is poly(ethylene furanoate) (PEF). However, similar to PET, PEF is not biodegradable or compostable and its end-of-life options must be thus considered to avoid contributing to the accumulation of plastic waste. In this manuscript, PEF films were first produced using thermo-compression, an industrially relevant processing method, and their thermal, mechanical, and barrier properties were determined and compared to those of PET and other biopolyesters to ascertain their suitability for food packaging. Thereafter, the chemical glycolysis of PEF film waste was investigated using a sustainable and thermally stable acid-base organocatalyst. After succesfully deconstructing PEF into bis(2-hydroxyethyl)-furan-2,5-dicarboxylate (BHEF), the obtained BHEF diester was used to resynthesize PEF using the same catalyst to generate a new biopolyester with similar thermal properties to the virgin one in a closed-loop cycle.The authors thank for technical and human support provided by IZO-SGI SGIker of UPV/EHU and European funding (ERDF and ESF). Authors gratefully acknowledge financial support from Spanish Ministry of Science and Innovation (MICI) through projects MAT2017-83373-R and RTI 2018-097249-B-C21. S. T.-G. acknowledges MICI for the funding received during his previous Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) and his current Ramon y Cajal contract (RYC2019-027784-I). A. M. I. acknowledges Prof. Cor Koning for the SSP reactor donated to POL group of Barcelona. Authors also thank India Glycols Ltd for kindly supplying bio-EG.Gabirondo, E.; Meléndez-Rodríguez, B.; Arnal, C.; Lagaron, JM.; Martínez De Ilarduya, A.; Sardon, H.; Torres-Giner, S. (2021). Organocatalyzed closed-loop chemical recycling of thermo-compressed films of poly(ethylene furanoate). Polymer Chemistry. 12(10):1571-1580. https://doi.org/10.1039/d0py01623cS15711580121

    Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers

    Get PDF
    [EN] Active multilayer films based on polyhydroxyalkanoates (PHAs) with and without high barrier coatings of cellulose nanocrystals (CNCs) were herein successfully developed. To this end, an electrospun antimicrobial hot-tack layer made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey, a by-product from the dairy industry, was deposited on a previously manufactured blown film of commercial food contact PHA-based resin. A hybrid combination of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were incorporated during the electrospinning process into the PHBV nanofibers at 2.5 and 2.25 wt%, respectively, in order to provide antimicrobial properties. A barrier CNC coating was also applied by casting from an aqueous solution of nanocellulose at 2 wt% using a rod at 1m/min. The whole multilayer structure was thereafter assembled in a pilot roll-to-roll laminating system, where the blown PHA-based film was located as the outer layers while the electrospun antimicrobial hot-tack PHBV layer and the barrier CNC coating were placed as interlayers. The resultant multilayer films, having a final thickness in the 130-150 mu m range, were characterized to ascertain their potential in biodegradable food packaging. The multilayers showed contact transparency, interlayer adhesion, improved barrier to water and limonene vapors, and intermediate mechanical performance. Moreover, the films presented high antimicrobial and antioxidant activities in both open and closed systems for up to 15 days. Finally, the food safety of the multilayers was assessed by migration and cytotoxicity tests, demonstrating that the films are safe to use in both alcoholic and acid food simulants and they are also not cytotoxic for Caco-2 cells.The Spanish Ministry of Science and Innovation (MICI) through the RTI2018-097249-B-C21 program number and the EU H2020 YPACK (reference number 773872) projects funded this research.Figueroa-Lopez, KJ.; Torres-Giner, S.; Angulo, I.; Pardo-Figuerez, M.; Escuin, JM.; Bourbon, AI.; Cabedo, L.... (2020). Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials. 10(12):1-24. https://doi.org/10.3390/nano10122356S124101

    Development and Characterization of Electrospun Fiber-Based Poly(ethylene- co -vinyl Alcohol) Films of Application Interest as High-Gas-Barrier Interlayers in Food Packaging

    Get PDF
    In the present study, poly(ethylene-co-vinyl alcohol) with 44 mol % ethylene content (EVOH44) was managed to be processed, for the first time, by electrospinning assisted by the coaxial technology of solvent jacket. In addition to this, different suspensions of cellulose nanocrystals (CNCs), with contents ranging from 0.1 to 1.0 wt %, were also electrospun to obtain hybrid bio-/non-bio nanocomposites. The resultant fiber mats were thereafter optimally annealed to promote interfiber coalescence at 145 °C, below the EVOH44 melting point, leading to continuous transparent fiber-based films. The morphological analysis revealed the successful distribution of CNCs into EVOH44 up to contents of 0.5 wt %. The incorporation of CNCs into the ethylene-vinyl alcohol copolymer caused a decrease in the crystallization and melting temperatures (TC and Tm) of about 12 and 7 °C, respectively, and also crystallinity. However, the incorporation of CNCs led to enhanced thermal stability of the copolymer matrix for a nanofiller content of 1.0 wt %. Furthermore, the incorporation of 0.1 and 0.5 wt % CNCs produced increases in the tensile modulus (E) of ca. 38% and 28%, respectively, but also yielded a reduction in the elongation at break and toughness. The oxygen barrier of the hybrid nanocomposite fiber-based films decreased with increasing the CNCs content, but they were seen to remain high barrier, especially in the low relative humidity (RH) regime, i.e., at 20% RH, showing permeability values lower than 0.6 × 10−20 m3·m·m−2·Pa−1·s−1. In general terms, an optimal balance in physical properties was found for the hybrid copolymer composite with a CNC loading of 0.1 wt %. On the overall, the present study demonstrates the potential of annealed electrospun fiber-based high-barrier polymers, with or without CNCs, to develop novel barrier interlayers to be used as food packaging constituents

    Preparation and Characterization of Electrospun Polysaccharide FucoPol-Based Nanofiber Systems

    Get PDF
    The electrospinnability of FucoPol, a bacterial exopolysaccharide, is presented for the first time, evaluated alone and in combination with other polymers, such as polyethylene oxide (PEO) and pullulan. The obtained fibers were characterized in terms of their morphological, structural and thermal properties. Pure FucoPol fibers could not be obtained due to FucoPol’s low water solubility and a lack of molecular entanglements. Nanofibers were obtained via blending with PEO and pullulan. FucoPol:PEO (1:3 w/w) showed fibers with well-defined cylindrical structure, since the higher molecular weight of PEO helps the continuity of the erupted jet towards the collector, forming stable fibers. WAXS, DSC and TGA showed that FucoPol is an amorphous biopolymer, stable until 220◦C, whereas FucoPol-PEO fibers were stable until 140◦C, and FucoPol:pullulan fibers were stable until 130◦C. Interestingly, blended components influenced one another in intermolecular order, since new peaks associated to intermolecular hierarchical assemblies were seen by WAXS. These results make FucoPol-based systems viable candidates for production of nanofibers for packaging, agriculture, biomedicine, pharmacy and cosmetic applications
    corecore