1,233 research outputs found
IRIS: A new generation of IRAS maps
The Infrared Astronomical Satellite (IRAS) had a tremendous impact on many
areas of modern astrophysics. In particular it revealed the ubiquity of
infrared cirrus that are a spectacular manifestation of the interstellar medium
complexity but also an important foreground for observational cosmology. With
the forthcoming Planck satellite there is a need for all-sky complementary data
sets with arcminute resolution that can bring informations on specific
foreground emissions that contaminate the Cosmic Microwave Background
radiation. With its 4 arcmin resolution matching perfectly the high-frequency
bands of Planck, IRAS is a natural data set to study the variations of dust
properties at all scales. But the latest version of the images delivered by the
IRAS team (the ISSA plates) suffer from calibration, zero level and striping
problems that can preclude its use, especially at 12 and 25 micron. In this
paper we present how we proceeded to solve each of these problems and enhance
significantly the general quality of the ISSA plates in the four bands (12, 25,
60 and 100 micron). This new generation of IRAS images, called IRIS, benefits
from a better zodiacal light subtraction, from a calibration and zero level
compatible with DIRBE, and from a better destriping. At 100 micron the IRIS
product is also a significant improvement from the Schlegel et al. (1998) maps.
IRIS keeps the full ISSA resolution, it includes well calibrated point sources
and the diffuse emission calibration at scales smaller than 1 degree was
corrected for the variation of the IRAS detector responsivity with scale and
brightness. The uncertainty on the IRIS calibration and zero level are
dominated by the uncertainty on the DIRBE calibration and on the accuracy of
the zodiacal light model.Comment: 16 pages, 17 figures, accepted for publication in ApJ (Suppl). Higher
resolution version available at
http://www.cita.utoronto.ca/~mamd/IRIS/IrisTechnical.htm
Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by MIPS/Spitzer: Constraint on the Bias
We report the detection of correlated anisotropies in the Cosmic Far-Infrared
Background at 160 microns. We measure the power spectrum in the Spitzer/SWIRE
Lockman Hole field. It reveals unambiguously a strong excess above cirrus and
Poisson contributions, at spatial scales between 5 and 30 arcminutes,
interpreted as the signature of infrared galaxy clustering. Using our model of
infrared galaxy evolution we derive a linear bias b=1.74 \pm 0.16. It is a
factor 2 higher than the bias measured for the local IRAS galaxies. Our model
indicates that galaxies dominating the 160 microns correlated anisotropies are
at z~1. This implies that infrared galaxies at high redshifts are biased
tracers of mass, unlike in the local Universe.Comment: ApJ Letters, in pres
The Near Infrared Background: Interplanetary Dust or Primordial Stars?
The intensity of the diffuse ~ 1 - 4 micron sky emission from which solar
system and Galactic foregrounds have been subtracted is in excess of that
expected from energy released by galaxies and stars that formed during the z <
5 redshift interval (Arendt & Dwek 2003, Matsumoto et al. 2005). The spectral
signature of this excess near-infrared background light (NIRBL) component is
almost identical to that of reflected sunlight from the interplanetary dust
cloud, and could therefore be the result of the incomplete subtraction of this
foreground emission component from the diffuse sky maps. Alternatively, this
emission component could be extragalactic. Its spectral signature is consistent
with that of redshifted continuum and recombination line emission from HII
regions formed by the first generation of very massive stars. In this paper we
analyze the implications of this spectral component for the formation rate of
these Population III stars, the redshift interval during which they formed, the
reionization of the universe and evolution of collapsed halo masses. We find
that to reproduce the intensity and spectral shape of the NIRBL requires a peak
star formation rate that is higher by about a factor of 4 to 10 compared to
those derived from hierarchical models. Furthermore, an extragalactic origin
for the NIRBL leads to physically unrealistic absorption-corrected spectra of
distant TeV blazars. All these results suggest that Pop III stars contribute
only a fraction of the NIRBL intensity with zodiacal light, star forming
galaxies, and/or non-nuclear sources giving rise to the remaining fraction.Comment: 28 pages including 7 embedded figures. Submitted to Ap
The impact of main belt asteroids on infrared--submillimetre photometry and source counts
> Among the components of the infrared and submillimetre sky background,
the closest layer is the thermal emission of dust particles and minor bodies in
the Solar System. This contribution is especially important for current and
future infrared and submillimetre space instruments --like those of Spitzer,
Akari and Herschel -- and must be characterised by a reliable statistical
model. > We describe the impact of the thermal emission of main belt
asteroids on the 5...1000um photometry and source counts, for the current and
future spaceborne and ground-based instruments, in general, as well as for
specific dates and sky positions. > We used the statistical asteroid model
(SAM) to calculate the positions of main belt asteroids down to a size of 1km,
and calculated their infrared and submillimetre brightness using the standard
thermal model. Fluctuation powers, confusion noise values and number counts
were derived from the fluxes of individual asteroids. > We have constructed
a large database of infrared and submillimetre fluxes for SAM asteroids with a
temporal resolution of 5 days, covering the time span January 1, 2000 --
December 31, 2012. Asteroid fluctuation powers and number counts derived from
this database can be obtained for a specific observation setup via our public
web-interface. > Current space instruments working in the mid-infrared
regime (Akari and Spitzer Space Telescopes) are affected by asteroid confusion
noise in some specific areas of the sky, while the photometry of space infrared
and submillimetre instruments in the near future (e.g. Herschel and Planck
Space Observatories) will not be affected by asteroids. Faint main belt
asteroids might also be responsible for most of the zodiacal emission
fluctuations near the ecliptic.Comment: accepted for publication in Astronomy & Astrophysics; Additional
material (appendices) and the related web-interface can be found at:
"http://kisag.konkoly.hu/solarsystem/irsam.html
Statistical properties of dust far-infrared emission
The description of the statistical properties of dust emission gives
important constraints on the physics of the interstellar medium but it is also
a useful way to estimate the contamination of diffuse interstellar emission in
the cases where it is considered a nuisance. The main goals of this analysis of
the power spectrum and non-Gaussian properties of 100 micron dust emission are
1) to estimate the power spectrum of interstellar matter density in three
dimensions, 2) to review and extend previous estimates of the cirrus noise due
to dust emission and 3) to produce simulated dust emission maps that reproduce
the observed statistical properties. The main results are the following. 1) The
cirrus noise level as a function of brightness has been previously
overestimated. It is found to be proportional to instead of ^1.5, where
is the local average brightness at 100 micron. This scaling is in
accordance with the fact that the brightness fluctuation level observed at a
given angular scale on the sky is the sum of fluctuations of increasing
amplitude with distance on the line of sight. 2) The spectral index of dust
emission at scales between 5 arcmin and 12.5 degrees is =-2.9 on average
but shows significant variations over the sky. Bright regions have
systematically steeper power spectra than diffuse regions. 3) The skewness and
kurtosis of brightness fluctuations is high, indicative of strong
non-Gaussianity. 4) Based on our characterization of the 100 micron power
spectrum we provide a prescription of the cirrus confusion noise as a function
of wavelength and scale. 5) Finally we present a method based on a modification
of Gaussian random fields to produce simulations of dust maps which reproduce
the power spectrum and non-Gaussian properties of interstellar dust emission.Comment: 13 pages, 13 figures. Accepted for publication in A&
Upper Limits on the Extragalactic Background Light from the Gamma-Ray Spectra of Blazars
The direct measurement of the extragalactic background light (EBL) is
difficult at optical to infrared wavelengths because of the strong foreground
radiation originating in the Solar System. Very high energy (VHE, E100 GeV)
gamma rays interact with EBL photons of these wavelengths through pair
production. In this work, the available VHE spectra from six blazars are used
to place upper limits on the EBL. These blazars have been detected over a range
of redshifts and a steepening of the spectral index is observed with increasing
source distance. This can be interpreted as absorption by the EBL. In general,
knowledge of the intrinsic source spectrum is necessary to determine the
density of the intervening EBL. Motivated by the observed spectral steepening
with redshift, upper limits on the EBL are derived by assuming that the
intrinsic spectra of the six blazars are . Upper limits are
then placed on the EBL flux at discrete energies without assuming a specific
spectral shape for the EBL. This is an advantage over other methods since the
EBL spectrum is uncertain.Comment: 33 pages, 14 figures, accepted by Ap
Measurement of CIB power spectra over large sky areas from Planck HFI maps
We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg. We use techniques similar to those applied for the cosmological analysis of , subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H i-cleaned spectra from measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γ = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of . We show that a linear combination of the 545 and 857 GHz maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.300.This work is based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA and Canada. GL acknowledge financial support from ‘Programme National de Cosmologie and Galaxies’(PNCG) of CNRS/INSU, France, the OCEVU Labex (ANR-11-LABX-0060) and the *AMIDEX project (ANR-11-IDEX-0001-02) funded by the ‘Investissements d'Avenir’ French government program managed by the ANR. DSY Mak acknowledges hospitality from the Laboratoire d'Astrophysique de Marseille, where part of this work was completed
- …