283 research outputs found
Effective interactions in medium heavy nuclei
We present a brief overview of microscopic nuclear structure approaches to
nuclei with mass number from 100 to 132. The emphasis is on the shell model and
theories for deriving effective interactions starting from the free
interactions between nucleons. New results for (105,106,107)Sb are presented.Comment: Proceedings of RNB5, 3-8 April 2000, Divonne, France. 6 pages,
Elsevier latex style. To appear in Nucl. Phys.
The bacterial strains characterization problem
The accurate characterization of collections of bacterial strains is a major scientific challenge, since bacteria are indeed responsible of significant plant diseases and thus subjected to official control procedures (e.g., in Europe, Directive 2000/29/EC). The development of diagnostic tests is therefore an important issue in order to routinely identify strains of these species
LO-phonon assisted polariton lasing in a ZnO based microcavity
Polariton relaxation mechanisms are analysed experimentally and theoretically
in a ZnO-based polariton laser. A minimum lasing threshold is obtained when the
energy difference between the exciton reservoir and the bottom of the lower
polariton branch is resonant with the LO phonon energy. Tuning off this
resonance increases the threshold, and exciton-exciton scattering processes
become involved in the polariton relaxation. These observations are
qualitatively reproduced by simulations based on the numerical solution of the
semi-classical Boltzmann equations
Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers
A new platform for fabricating polariton lasers operating at room temperature
is introduced: nitride-based distributed Bragg reflectors epitaxially grown on
patterned silicon substrates. The patterning allows for an enhanced strain
relaxation thereby enabling to stack a large number of crack-free AlN/AlGaN
pairs and achieve cavity quality factors of several thousands with a large
spatial homogeneity. GaN and ZnO active regions are epitaxially grown thereon
and the cavities are completed with top dielectric Bragg reflectors. The two
structures display strong-coupling and polariton lasing at room temperature and
constitute an intermediate step in the way towards integrated polariton
devices
Alkali Doping Leads to Charge-Transfer Salt Formation in a Two-Dimensional MetalâOrganic Framework
Efficient charge transfer across metalâorganic interfaces is a key physical process in modern organic electronics devices, and characterization of the energy level alignment at the interface is crucial to enable a rational device design. We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metalâorganic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different from those of the two-dimensional Ag adatom TCNQ metalâorganic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative X-ray standing wave measurements, scanning tunnelling microscopy, and density-functional theory (DFT) calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. The commensurate surface layer formed by TCNQ and K is dominated by strong charge transfer and ionic bonding and is accompanied by a structural and electronic decoupling from the underlying metal substrate. The consequence is a significant change in energy level alignment and work function compared to TCNQ on Ag(111). Possible implications of charge-transfer salt formation at metalâorganic interfaces for organic thin-film devices are discussed
Orbifold projection in supersymmetric QCD at N_f\leq N_c
Supersymmetric orbifold projection of N=1 SQCD with relatively small number
of flavors (not larger than the number of colors) is considered. The purpose is
to check whether orbifolding commutes with the infrared limit. On the one hand,
one considers the orbifold projection of SQCD and obtains the low-energy
description of the resulting theory. On the other hand, one starts with the
low-energy effective theory of the original SQCD, and only then perfoms
orbifolding. It is shown that at finite N_c the two low-energy theories
obtained in these ways are different. However, in the case of stabilized
run-away vacuum these two theories are shown to coincide in the large N_c
limit. In the case of quantum modified moduli space, topological solitons
carrying baryonic charges are present in the orbifolded low-energy theory.
These solitons may restore the correspondence between the two theories provided
that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde
Quartic scaling of sound attenuation with frequency in vitreous silica
Several theoretical approaches to disordered media predict that acoustic
waves should undergo a quartic increase in their attenuation coefficient with
increasing frequency in the sub-terahertz region. Such Rayleigh-type scattering
would be related to the anomalous low-temperature plateau in the thermal
conductivity and to the so-called boson peak, i.e. an excess of vibrational
modes above the Debye density of states at around 1 THz. Brillouin scattering
of light allows the measurement of sound absorption and velocity dispersion up
to about 0.1 THz while inelastic x-ray scattering is limited to frequencies
larger than about 1 THz. We take advantage of the advent of ultrafast optical
techniques to explore the acoustical properties of amorphous SiO2 layers in the
difficult but crucial frequency region within this gap. A quartic scaling law
with frequency is clearly revealed between 0.2 and 0.9 THz, which is further
shown to be independent of temperature. This strongly damped regime is
accompanied by a decrease in the sound velocity already starting from about 0.5
THz, in line with theories. Our study assists to clarify the anomalous
acoustical properties in glasses at frequencies entering the boson peak region.Comment: 4 figures, 11 page
- âŠ