35 research outputs found

    Person identification using deep neural networks on physiological biomarkers during exercise

    Full text link
    Much progress has been made in wearable sensors that provide real-time continuous physiological data from non- invasive measurements including heart rate and biofluids such as sweat. This information can potentially be used to identify the health condition of a person by applying machine learning algorithms on the physiological measurements. We present a person identification task that uses machine learning algorithms on a set of biomarkers collected from 30 subjects carrying out a cycling experiment. We compared an SVM and a gated recurrent neural network (RNN) for real-time accuracy using different window sizes of the measured data. Results show that using all biomarkers gave the best results from any of the models. With all biomarkers, the gated RNN model achieved ∼90% accuracy even in a 30 s time window; and ∼92.3% accuracy in a 150 s time window. Excluding any of the biomarkers leads to at least 7.4% absolute accuracy drop for the RNN model. The RNN implementation on the Jetson Nano incurs a low latency of ∼45 ms per inference

    Real-time smart multisensing wearable platform for monitoring sweat biomarkers during exercise

    Full text link
    Sweat secreted by the human eccrine sweat glands can provide valuable biomarker information during exercise in hot and humid conditions. Real-time noninvasive biomarker recordings are therefore useful for evaluating the physiological conditions of an athlete such as their hydration status during endurance exercise. In this work, we describe a platform that in- cludes different sweat biomonitoring prototypes of cost-effective, smart wearable devices for continuous biomonitoring of sweat during exercise. One prototype is based on conformable and disposable soft sensing patches with an integrated multi-sensor array requiring the integration of different sensors and printed sensors with their corresponding functionalization protocols on the same substrate. The second is based on silicon based sensors and paper microfluidics. Both platforms integrate a multi-sensor array for measuring sodium, potassium, and pH in sweat. We show preliminary results obtained from the multi-sensor prototypes placed on two athletes during exercise. We also show that the machine learning algorithms can predict the percentage of body weight loss during exercise from biomarkers such as heart rate and sweat sodium concentration collected over multiple subjects

    Multisensing wearables for real-time monitoring of sweat electrolyte biomarkers during exercise and analysis on their correlation with core body temperature

    Full text link
    Sweat secreted by the human eccrine sweat glands can provide valuable biomarker information during exercise. Real-time non-invasive biomarker recordings are therefore useful for evaluating the physiological conditions of an athlete such as their hydration status during endurance exercise. This work describes a wearable sweat biomonitoring patch incorporating printed electrochemical sensors into a plastic microfluidic sweat collector and data analysis that shows the real-time recorded sweat biomarkers can be used to predict a physiological biomarker. The system was placed on subjects carrying out an hour-long exercise session and results were compared to a wearable system using potentiometric robust silicon-based sensors and to commercially available HORIBA-LAQUAtwin devices. Both prototypes were applied to the real-time monitoring of sweat during cycling sessions and showed stable readings for around an hour. Analysis of the sweat biomarkers collected from the printed patch prototype shows that their real-time measurements correlate well (correlation coefficient ≥0.65 ) with other physiological biomarkers such as heart rate and regional sweat rate collected in the same session. We show for the first time, that the real-time sweat sodium and potassium concentration biomarker measurements from the printed sensors can be used to predict the core body temperature with root mean square error (RMSE) of 0.02 °C which is 71% lower compared to the use of only the physiological biomarkers. These results show that these wearable patch technologies are promising for real-time portable sweat monitoring analytical platforms, especially for athletes performing endurance exercise

    Etudes Biochimique et Structurale de DsbA1, DsbA2 et DsbA3 : les trois homologues à l'oxydoréductase de Thiol-disulfure DsbA chez Neisseria meningitidis.

    Get PDF
    Neisseria meningitidis is an invasive bacterial pathogen causing life-threatening infection. Host-pathogen interactions depend on the correct folding of many surface-exposed proteins, which often requires disulfide bond formation. In Gram-negative bacteria, the synthesis of disulfide bonds is catalyzed by the thiol-disulfide oxidoreductase DsbA. N. meningitidis possesses three genes encoding three active DsbA (DsbA1, DsbA2 and DsbA3). DsbA1 and DsbA2 are lipoproteins involved in the virulence while DsbA3 is a soluble periplasmic protein non related to the virulence. This work reports the biochemical characterisation of the three neisserial enzymes and the crystal structures of DsbA1 and DsbA3. DsbA1 and DsbA3 adopt the classical Escherichia coli DsbA fold. The most striking feature shared by all three proteins is their exceptional oxidizing power. With a redox potential of -80 mV, they are the most oxidizing thioredoxin-like enzymes known to date. For each of these enzymes, the threonine residue found within the active site region plays a key role in dictating this extraordinary oxidizing power. Consistent with these findings, thermal studies indicate that their reduced form is also extremely stable. This result highlights how residues located outside the CXXC motif may influence the redox potential of members of the thioredoxin family. In addition, this functional and structural study shows that the phenotype associated with DsbA3 in N. meningitidis cannot be explained by a difference of redox activity.Neisseria meningitidis est le principal agent responsable de méningites bactériennes. Les interactions hôte-pathogène dépendent du repliement correct de nombreuses protéines de surface, qui nécessite souvent la formation de ponts disulfures. Chez les bactéries à Gram-négatif, la synthèse de ces ponts est catalysée par l'oxydoréductase de thiol-disulfure DsbA. N. meningitidis possède trois gènes qui codent pour trois DsbA actives : DsbA1, DsbA2 et DsbA3. DsbA1 et DsbA2 sont des lipoprotéines impliquées dans la virulence alors que DsbA3 est une enzyme soluble périplasmique non reliée à la virulence. Les travaux de cette thèse se rapportent aux caractérisations biochimiques de ces trois enzymes et structurales de DsbA1 et DsbA3. DsbA1 et DsbA3 adoptent le repliement classique de DsbA d'Escherichia coli. La caractéristique la plus étonnante partagée par ces trois enzymes est leur exceptionnel pouvoir oxydant. Avec un potentiel redox de -80 mV, les DsbA de Neisseria sont les enzymes de la famille des thiorédoxines les plus oxydantes connues à ce jour. En accord avec cela, les études de stabilité thermales indiquent que leur forme réduite est extrêmement stable. Pour chacune de ces enzymes, les études montrent que le résidu Thréonine, retrouvé dans la région du site actif, joue un rôle clé dans la détermination de cet extraordinaire pouvoir oxydant. L'ensemble de ces résultats montrent comment des résidus situés en dehors du motif actif CXXC peuvent influencer le potentiel redox de membres de la famille des thiorédoxines. Ils montrent également que le phénotype associé à DsbA3 chez N. meningitidis ne peut être expliqué par une différence d'activité redox ou de structure

    Etudes Biochimique et Structurale de DsbA1, DsbA2 et DsbA3 : les trois homologues à l'oxydoréductase de Thiol-disulfure DsbA chez Neisseria meningitidis.

    No full text
    Neisseria meningitidis is an invasive bacterial pathogen causing life-threatening infection. Host-pathogen interactions depend on the correct folding of many surface-exposed proteins, which often requires disulfide bond formation. In Gram-negative bacteria, the synthesis of disulfide bonds is catalyzed by the thiol-disulfide oxidoreductase DsbA. N. meningitidis possesses three genes encoding three active DsbA (DsbA1, DsbA2 and DsbA3). DsbA1 and DsbA2 are lipoproteins involved in the virulence while DsbA3 is a soluble periplasmic protein non related to the virulence. This work reports the biochemical characterisation of the three neisserial enzymes and the crystal structures of DsbA1 and DsbA3. DsbA1 and DsbA3 adopt the classical Escherichia coli DsbA fold. The most striking feature shared by all three proteins is their exceptional oxidizing power. With a redox potential of -80 mV, they are the most oxidizing thioredoxin-like enzymes known to date. For each of these enzymes, the threonine residue found within the active site region plays a key role in dictating this extraordinary oxidizing power. Consistent with these findings, thermal studies indicate that their reduced form is also extremely stable. This result highlights how residues located outside the CXXC motif may influence the redox potential of members of the thioredoxin family. In addition, this functional and structural study shows that the phenotype associated with DsbA3 in N. meningitidis cannot be explained by a difference of redox activity.Neisseria meningitidis est le principal agent responsable de méningites bactériennes. Les interactions hôte-pathogène dépendent du repliement correct de nombreuses protéines de surface, qui nécessite souvent la formation de ponts disulfures. Chez les bactéries à Gram-négatif, la synthèse de ces ponts est catalysée par l'oxydoréductase de thiol-disulfure DsbA. N. meningitidis possède trois gènes qui codent pour trois DsbA actives : DsbA1, DsbA2 et DsbA3. DsbA1 et DsbA2 sont des lipoprotéines impliquées dans la virulence alors que DsbA3 est une enzyme soluble périplasmique non reliée à la virulence. Les travaux de cette thèse se rapportent aux caractérisations biochimiques de ces trois enzymes et structurales de DsbA1 et DsbA3. DsbA1 et DsbA3 adoptent le repliement classique de DsbA d'Escherichia coli. La caractéristique la plus étonnante partagée par ces trois enzymes est leur exceptionnel pouvoir oxydant. Avec un potentiel redox de -80 mV, les DsbA de Neisseria sont les enzymes de la famille des thiorédoxines les plus oxydantes connues à ce jour. En accord avec cela, les études de stabilité thermales indiquent que leur forme réduite est extrêmement stable. Pour chacune de ces enzymes, les études montrent que le résidu Thréonine, retrouvé dans la région du site actif, joue un rôle clé dans la détermination de cet extraordinaire pouvoir oxydant. L'ensemble de ces résultats montrent comment des résidus situés en dehors du motif actif CXXC peuvent influencer le potentiel redox de membres de la famille des thiorédoxines. Ils montrent également que le phénotype associé à DsbA3 chez N. meningitidis ne peut être expliqué par une différence d'activité redox ou de structure

    Printed Iontophoretic‐Integrated Wearable Microfluidic Sweat‐Sensing Patch for On‐Demand Point‐Of‐Care Sweat Analysis

    No full text
    In recent years, wearable epidermal sweat sensors have received extensive attention owing to their great potential to provide personalized information on the health status of individuals at the molecular level. For on‐demand medical analysis of sweat in sedentary conditions, a cost‐effective wearable integrated platform combining sweat stimulation, sampling, transport, and analysis is highly desirable. In this work, a printed iontophoretic system integrated into a microfluidic sensing platform, which combines sweat induction, collection, and real‐time analysis of sweat‐ions into a single patch for on‐demand sweat monitoring on human subjects in stationary conditions is reported. The incorporation of microfluidics features facilitates sweat sampling, collection, and guiding through capillary effect. The multisensing sensor array exhibits sensitivity close to Nernstian behavior for sodium, potassium, and pH. The correlation between the concentrations of ions measured with the sweat patch and with ion chromatography analysis demonstrates the applicability of the system for real‐time point‐of‐care monitoring of the health status of individuals. Furthermore, the sweat patch electronic interface with wireless transmission enables real‐time data monitoring and storage over a cloud platform. This printed iontophoretic‐integrated fluidic sweat patch provides a cost‐effective solution for the on‐demand analysis of sweat components for healthcare applications

    Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis.

    No full text
    International audienceBacterial virulence depends on the correct folding of surface-exposed proteins, a process catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. The Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host interactive biology, while the function of DsbA3 remains unknown. This work reports the biochemical characterization of the three neisserial enzymes and the crystal structures of DsbA1 and DsbA3. As predicted by sequence homology, both enzymes adopt the classic Escherichia coli DsbA fold. The most striking feature shared by all three proteins is their exceptional oxidizing power. With a redox potential of -80 mV, the neisserial DsbAs are the most oxidizing thioredoxin-like enzymes known to date. Consistent with these findings, thermal studies indicate that their reduced form is also extremely stable. For each of these enzymes, this study shows that a threonine residue found within the active-site region plays a key role in dictating this extraordinary oxidizing power. This result highlights how residues located outside the CXXC motif may influence the redox potential of members of the thioredoxin family

    Structural Determinants of Improved Fluorescence in a Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins: Insights from Continuum Electrostatic Calculations and Molecular Dynamics Simulations

    No full text
    International audienceUsing X-ray crystallography, continuum electrostatic calculations, and molecular dynamics simulations, we have studied the structure, protonation behavior, and dynamics of the biliverdin chromophore and its molecular environment in a series of genetically engineered infrared fluorescent proteins (IFPs) based on the chromophore-binding domain of the Deinococcus radiodurans bacteriophytochrome. Our study suggests that the experimentally observed enhancement of fluorescent properties results from the improved rigidity and planarity of the biliverdin chromophore, in particular of the first two pyrrole rings neighboring the covalent linkage to the protein. We propose that the increases in the levels of both motion and bending of the chromophore out of planarity favor the decrease in fluorescence. The chromophore-binding pocket in some of the studied proteins, in particular the weakly fluorescent parent protein, is shown to be readily accessible to water molecules from the solvent. These waters entering the chromophore region form hydrogen bond networks that affect the otherwise planar conformation of the first three rings of the chromophore. On the basis of our simulations, the enhancement of fluorescence in IFPs can be achieved either by reducing the mobility of water molecules in the vicinity of the chromophore or by limiting the interactions of the nearby protein residues with the chromophore. Finally, simulations performed at both low and neutral pH values highlight differences in the dynamics of the chromophore and shed light on the mechanism of fluorescence loss at low pH
    corecore