29 research outputs found

    Front Microbiol

    Get PDF
    Brettanomyces bruxellensis is the main spoilage microbial agent in red wines. The use of fungal chitosan has been authorized since 2009 as a curative treatment to eliminate this yeast in conventional wines and in 2018 in organic wines. As this species is known to exhibit great genetic and phenotypic diversity, we examined whether all the strains responded the same way to chitosan treatment. A collection of 53 strains of was used. In the conditions of the reference test, all were at least temporarily affected by the addition of chitosan to wine, with significant decrease of cultivable population. Some (41%) were very sensitive and no cultivable yeast was detected in wine or lees after 3 days of treatment, while others (13%) were tolerant and, after a slight drop in cultivability, resumed growth between 3 and 10 days and remained able to produce spoilage compounds. There were also many strains with intermediate behavior. The strain behavior was only partially linked to the strain genetic group. This behavior was little modulated by the physiological state of the strain or the dose of chitosan used (within the limits of the authorized doses). On the other hand, for a given strain, the sensitivity to chitosan treatment was modulated by the chitosan used and by the properties of the wine in which the treatment was carried out.Recherches sur l’origine et les effets secondaires des propriétés stabilisantes du chitosane fongique dans le vi

    Non-linear dynamics of micro-lasers in organic material : technology and physics

    No full text
    Cette thèse est consacrée à l’étude fondamentale et au développement de micro-sources lasers en matériaux organiques, susceptibles de débouchés dans les technologies de l’information et les biotechnologies. Nous avons exploré l'aspect tridimensionnel (3D) de ces lasers, tant en termes de fabrication que de caractérisation. Concernant la fabrication, nous avons fait évoluer la géométrie des microlasers, auparavant quasi-bidimensionnelle (2D, issue de films fins) vers une géométrie 3D (comme des cubes). Des procédés de lithographie UV épaisse ou d’écriture directe au laser par photo-polymérisation à 2 photons ont été adaptés pour réaliser des formes sur mesure de micro-résonateurs optiques incluant un colorant. Afin d'étudier l'émission très anisotrope de ces lasers, nous avons conçu et développé un outil original, appelé scanner à angle solide (SAS), permettant de collecter l'émission d’un microlaser dans toutes les directions du demi-espace qui le surplombe, avec une grande précision. Le SAS a permis de constater que les microlasers 2D émettent principalement hors-plan. Un modèle a été développé pour expliquer cet effet et émettre des prédictions. D’autre part, différentes formes de microlasers 2D ont été analysées, à partir de leurs directions et spectres d’émission, grâce au formalisme semi-classique des orbites périodiques. En particulier, une orbite diffractive a été observée dans les triangles, ce qui ouvre la voie à une étude systématique de la diffraction par un coin diélectrique. Nous apportons également une explication à la directionalité de l’émission par des microlasers carrés. Pour finir, les premières caractérisations 3D de micro-lasers 3D ont été réalisées.We investigate in this thesis fundamental and applied properties of solid-state laser micro-sources made of organic materials, with possible applications to information and biosensing technologies. We explored three-dimensional features pertaining both to fabrication and characterization of such lasers. Regarding the fabrication, we extended the geometry of organic microlasers, previously restricted to quasi-two-dimensional (2D) as from thin film patterning, onto full 3D structures such as cubes. Deep UV lithography and direct laser writing with two-photon-polymerization processes have been adapted in order to fabricate customized shapes, which incorporate a laser dye. To study the highly anisotropic emission from these lasers, we conceived a new set-up, called solid angle scanner (SAS), allowing for high angular accuracy detection of the emission from a micro-laser in all directions in space. When applied to 2D micro-lasers, SAS measurements allowed us to observe that they emit mainly out of their plane. We developed a model to account for this effect and infer predictions. Moreover, various shapes of 2D micro-lasers have been investigated, through the angular and spectral features of their emission, with experiments satisfactorily connected to a semi-classical theoretical approach of periodic orbits. We paid special attention to triangular shapes, for which a diffractive orbit was observed, opening the way to the study of diffraction by a dielectric corner. We also propose an explanation for the directionality of the emission by square micro-lasers. Finally, 3D characterizations of solid state 3D organic micro-lasers are presented for the first time to our knowledge

    Dynamique non-linéaire dans les microcavités laser tridimensionnelles à base de polymères : aspects physiques et technologiques

    No full text
    We investigate in this thesis fundamental and applied properties of solid-state laser micro-sources made of organic materials, with possible applications to information and biosensing technologies. We explored three-dimensional features pertaining both to fabrication and characterization of such lasers. Regarding the fabrication, we extended the geometry of organic microlasers, previously restricted to quasi-two-dimensional (2D) as from thin film patterning, onto full 3D structures such as cubes. Deep UV lithography and direct laser writing with two-photon-polymerization processes have been adapted in order to fabricate customized shapes, which incorporate a laser dye. To study the highly anisotropic emission from these lasers, we conceived a new set-up, called solid angle scanner (SAS), allowing for high angular accuracy detection of the emission from a micro-laser in all directions in space. When applied to 2D micro-lasers, SAS measurements allowed us to observe that they emit mainly out of their plane. We developed a model to account for this effect and infer predictions. Moreover, various shapes of 2D micro-lasers have been investigated, through the angular and spectral features of their emission, with experiments satisfactorily connected to a semi-classical theoretical approach of periodic orbits. We paid special attention to triangular shapes, for which a diffractive orbit was observed, opening the way to the study of diffraction by a dielectric corner. We also propose an explanation for the directionality of the emission by square micro-lasers. Finally, 3D characterizations of solid state 3D organic micro-lasers are presented for the first time to our knowledge.Cette thèse est consacrée à l’étude fondamentale et au développement de micro-sources lasers en matériaux organiques, susceptibles de débouchés dans les technologies de l’information et les biotechnologies. Nous avons exploré l'aspect tridimensionnel (3D) de ces lasers, tant en termes de fabrication que de caractérisation. Concernant la fabrication, nous avons fait évoluer la géométrie des microlasers, auparavant quasi-bidimensionnelle (2D, issue de films fins) vers une géométrie 3D (comme des cubes). Des procédés de lithographie UV épaisse ou d’écriture directe au laser par photo-polymérisation à 2 photons ont été adaptés pour réaliser des formes sur mesure de micro-résonateurs optiques incluant un colorant. Afin d'étudier l'émission très anisotrope de ces lasers, nous avons conçu et développé un outil original, appelé scanner à angle solide (SAS), permettant de collecter l'émission d’un microlaser dans toutes les directions du demi-espace qui le surplombe, avec une grande précision. Le SAS a permis de constater que les microlasers 2D émettent principalement hors-plan. Un modèle a été développé pour expliquer cet effet et émettre des prédictions. D’autre part, différentes formes de microlasers 2D ont été analysées, à partir de leurs directions et spectres d’émission, grâce au formalisme semi-classique des orbites périodiques. En particulier, une orbite diffractive a été observée dans les triangles, ce qui ouvre la voie à une étude systématique de la diffraction par un coin diélectrique. Nous apportons également une explication à la directionalité de l’émission par des microlasers carrés. Pour finir, les premières caractérisations 3D de micro-lasers 3D ont été réalisées

    Non-linear dynamics of micro-lasers in organic material : technology and physics

    Get PDF
    Cette thèse est consacrée à l’étude fondamentale et au développement de micro-sources lasers en matériaux organiques, susceptibles de débouchés dans les technologies de l’information et les biotechnologies. Nous avons exploré l'aspect tridimensionnel (3D) de ces lasers, tant en termes de fabrication que de caractérisation. Concernant la fabrication, nous avons fait évoluer la géométrie des microlasers, auparavant quasi-bidimensionnelle (2D, issue de films fins) vers une géométrie 3D (comme des cubes). Des procédés de lithographie UV épaisse ou d’écriture directe au laser par photo-polymérisation à 2 photons ont été adaptés pour réaliser des formes sur mesure de micro-résonateurs optiques incluant un colorant. Afin d'étudier l'émission très anisotrope de ces lasers, nous avons conçu et développé un outil original, appelé scanner à angle solide (SAS), permettant de collecter l'émission d’un microlaser dans toutes les directions du demi-espace qui le surplombe, avec une grande précision. Le SAS a permis de constater que les microlasers 2D émettent principalement hors-plan. Un modèle a été développé pour expliquer cet effet et émettre des prédictions. D’autre part, différentes formes de microlasers 2D ont été analysées, à partir de leurs directions et spectres d’émission, grâce au formalisme semi-classique des orbites périodiques. En particulier, une orbite diffractive a été observée dans les triangles, ce qui ouvre la voie à une étude systématique de la diffraction par un coin diélectrique. Nous apportons également une explication à la directionalité de l’émission par des microlasers carrés. Pour finir, les premières caractérisations 3D de micro-lasers 3D ont été réalisées.We investigate in this thesis fundamental and applied properties of solid-state laser micro-sources made of organic materials, with possible applications to information and biosensing technologies. We explored three-dimensional features pertaining both to fabrication and characterization of such lasers. Regarding the fabrication, we extended the geometry of organic microlasers, previously restricted to quasi-two-dimensional (2D) as from thin film patterning, onto full 3D structures such as cubes. Deep UV lithography and direct laser writing with two-photon-polymerization processes have been adapted in order to fabricate customized shapes, which incorporate a laser dye. To study the highly anisotropic emission from these lasers, we conceived a new set-up, called solid angle scanner (SAS), allowing for high angular accuracy detection of the emission from a micro-laser in all directions in space. When applied to 2D micro-lasers, SAS measurements allowed us to observe that they emit mainly out of their plane. We developed a model to account for this effect and infer predictions. Moreover, various shapes of 2D micro-lasers have been investigated, through the angular and spectral features of their emission, with experiments satisfactorily connected to a semi-classical theoretical approach of periodic orbits. We paid special attention to triangular shapes, for which a diffractive orbit was observed, opening the way to the study of diffraction by a dielectric corner. We also propose an explanation for the directionality of the emission by square micro-lasers. Finally, 3D characterizations of solid state 3D organic micro-lasers are presented for the first time to our knowledge

    Dynamique non-linéaire dans les microcavités laser tridimensionnelles à base de polymères (aspects physiques et technologiques)

    No full text
    Cette thèse est consacrée à l étude fondamentale et au développement de micro-sources lasers en matériaux organiques, susceptibles de débouchés dans les technologies de l information et les biotechnologies. Nous avons exploré l'aspect tridimensionnel (3D) de ces lasers, tant en termes de fabrication que de caractérisation. Concernant la fabrication, nous avons fait évoluer la géométrie des microlasers, auparavant quasi-bidimensionnelle (2D, issue de films fins) vers une géométrie 3D (comme des cubes). Des procédés de lithographie UV épaisse ou d écriture directe au laser par photo-polymérisation à 2 photons ont été adaptés pour réaliser des formes sur mesure de micro-résonateurs optiques incluant un colorant. Afin d'étudier l'émission très anisotrope de ces lasers, nous avons conçu et développé un outil original, appelé scanner à angle solide (SAS), permettant de collecter l'émission d un microlaser dans toutes les directions du demi-espace qui le surplombe, avec une grande précision. Le SAS a permis de constater que les microlasers 2D émettent principalement hors-plan. Un modèle a été développé pour expliquer cet effet et émettre des prédictions. D autre part, différentes formes de microlasers 2D ont été analysées, à partir de leurs directions et spectres d émission, grâce au formalisme semi-classique des orbites périodiques. En particulier, une orbite diffractive a été observée dans les triangles, ce qui ouvre la voie à une étude systématique de la diffraction par un coin diélectrique. Nous apportons également une explication à la directionalité de l émission par des microlasers carrés. Pour finir, les premières caractérisations 3D de micro-lasers 3D ont été réalisées.We investigate in this thesis fundamental and applied properties of solid-state laser micro-sources made of organic materials, with possible applications to information and biosensing technologies. We explored three-dimensional features pertaining both to fabrication and characterization of such lasers. Regarding the fabrication, we extended the geometry of organic microlasers, previously restricted to quasi-two-dimensional (2D) as from thin film patterning, onto full 3D structures such as cubes. Deep UV lithography and direct laser writing with two-photon-polymerization processes have been adapted in order to fabricate customized shapes, which incorporate a laser dye. To study the highly anisotropic emission from these lasers, we conceived a new set-up, called solid angle scanner (SAS), allowing for high angular accuracy detection of the emission from a micro-laser in all directions in space. When applied to 2D micro-lasers, SAS measurements allowed us to observe that they emit mainly out of their plane. We developed a model to account for this effect and infer predictions. Moreover, various shapes of 2D micro-lasers have been investigated, through the angular and spectral features of their emission, with experiments satisfactorily connected to a semi-classical theoretical approach of periodic orbits. We paid special attention to triangular shapes, for which a diffractive orbit was observed, opening the way to the study of diffraction by a dielectric corner. We also propose an explanation for the directionality of the emission by square micro-lasers. Finally, 3D characterizations of solid state 3D organic micro-lasers are presented for the first time to our knowledge.CACHAN-ENS (940162301) / SudocSudocFranceF

    Three-dimensional microlasers based on polymer fibers fabricated by electrospinning

    No full text
    We report three-dimensional mirror-less lasing from non-cylindrical dye doped polystyrene fibers drawn using an electrospinning procedure where the fiber cross-sectional shape and dimension could be controlled. Signatures of three dimensional etalon like modes were observed corresponding to the transverse and axial quantization of the wave vector. Low lasing thresholds of the order of 200 nJ were achieved along with moderate Q factors

    Möbius strip microlasers: Quantum chaos on curved surfaces

    No full text
    International audienceMöbius strip microlasers are fabricated by direct laser writing. Experiments and 3D FDTD numerical simulations evidence that laser modes propagate along periodic geodesics, a geodesic being the shortest path between two points on a surface

    Production of Fungal Nanochitosan Using High-Pressure Water Jet System for Biomedical Applications

    Get PDF
    In this present work, fungal nanochitosans, with very interesting particle size distribution of 22 µm, were efficiently generated in high-yield production using a high-pressure water jet system (Star Burst System, Sugino, Japan) after 10 passes of mechanical treatment under high pressure. The specific characterization of fungal chitosan nanofibers suspensions in water revealed a high viscosity of 1450 mPa.s and an estimated transparency of 43.5% after 10 passes of fibrillation mechanical treatment. The mechanical characterization of fungal nanochitosan (NC) film are very interesting for medical applications with a Young’s modulus (E), a tensile strength (TS), and elongation at break (e%) estimated at 2950 MPa, 50.5 MPa, and 5.5%, respectively. Furthermore, we exhibited that the fungal nanochitosan (NC) film presented very good long-term antioxidant effect (reached 82.4% after 96 h of contact with DPPH radical solution) and very interesting antimicrobial activity when the nanochitosan (NC) fibers are mainly activated as NC-NH3+ form at the surface of the film with 45% reduction and 75% reduction observed for S. aureus (Gram-positive) and E. coli (Gram-negative), respectively, after 6 h of treatment. These promising antimicrobial and antioxidant activities indicated the high potential of valorization toward biomedical applications.Recherches sur l'origine et les effets secondaires des propriétés stabilisantes du chitosane fongique dans le vi
    corecore