26 research outputs found

    Evidence for a role of the (alpha)-tubulin C terminus in the regulation of cyclin B synthesis in developing oocytes.

    Get PDF
    International audienceMicroinjected mAb YL1/2, an (alpha)-tubulin antibody specific for the tyrosinated form of the protein, blocks the cell cycle in developing oocytes. Here, we have investigated the mechanism involved in the mAb effect. Both developing starfish and Xenopus oocytes were injected with two different (alpha)-tubulin C terminus antibodies. The injected antibodies blocked cell entry into mitosis through specific inhibition of cyclin B synthesis. The antibody effect was independent of the presence or absence of polymerized microtubules and was mimicked by injected synthetic peptides corresponding to the tyrosinated (alpha)-tubulin C terminus, whereas peptides lacking the terminal tyrosine were ineffective. These results indicate that tyrosinated (alpha)-tubulin, or another protein sharing the same C-terminal epitope, is involved in specific regulation of cyclin B synthesis in developing oocytes

    Evidence for a role of the (alpha)-tubulin C terminus in the regulation of cyclin B synthesis in developing oocytes.

    No full text
    International audienceMicroinjected mAb YL1/2, an (alpha)-tubulin antibody specific for the tyrosinated form of the protein, blocks the cell cycle in developing oocytes. Here, we have investigated the mechanism involved in the mAb effect. Both developing starfish and Xenopus oocytes were injected with two different (alpha)-tubulin C terminus antibodies. The injected antibodies blocked cell entry into mitosis through specific inhibition of cyclin B synthesis. The antibody effect was independent of the presence or absence of polymerized microtubules and was mimicked by injected synthetic peptides corresponding to the tyrosinated (alpha)-tubulin C terminus, whereas peptides lacking the terminal tyrosine were ineffective. These results indicate that tyrosinated (alpha)-tubulin, or another protein sharing the same C-terminal epitope, is involved in specific regulation of cyclin B synthesis in developing oocytes

    Preliminary crystallographic study of a complex formed between the alpha/beta-tubulin heterodimer and the neuronal growth-associated protein SCG10.

    No full text
    International audienceCrystals of a complex formed between the alpha/beta-tubulin heterodimer and SCG10, a neuron-specific growth-associated protein, have been obtained by the hanging drop method. They belong to the space group P2(1)2(1)2(1), with unit cell parameters a = 56 A, b = 353 A, c = 466 A and four molecular complexes in the asymmetric unit. A complete X-ray diffraction data set to 6.1 A resolution has been collected using synchrotron radiation. This represents a challenging opportunity to study at a molecular level the structure-function relationships between a microtubule-destabilizing protein, SCG10, and tubulin

    Suppression of tubulin tyrosine ligase during tumor growth.

    No full text
    International audienceThe C terminus of the tubulin alpha-subunit of most eukaryotic cells undergoes a cycle of tyrosination and detyrosination using two specific enzymes, a tubulin tyrosine ligase (TTL) and a tubulin carboxypeptidase. Although this enzyme cycle is conserved in evolution and exhibits rapid turnover, the meaning of this modification has remained elusive. We have isolated several NIH-3T3 derived clonal cell lines that lack TTL (TTL-). TTL- cells contain a unique tubulin isotype (delta2-tubulin) that can be detected with specific antibodies. When injected into nude mice, both TTL- cells and TTL- cells stably transfected with TTL cDNA form sarcomas. But in tumors formed from TTL rescued cells, TTL is systematically lost during tumor growth. A strong selection process has thus acted during tumor growth to suppress TTL activity. In accord with this result, we find suppression of TTL activity in the majority of human tumors assayed with delta2-tubulin antibody. We conclude there is a widespread loss of TTL activity during tumor growth in situ, suggesting that TTL activity may play a role in tumor cell regulation

    Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis.

    No full text
    International audienceTubulin, the dimeric subunit of microtubules, is a major cell protein that is centrally involved in cell division. Tubulin is subject to specific enzymatic posttranslational modifications including cyclic tyrosine removal and addition at the COOH terminus of the alpha-subunit. Tubulin is normally extensively tyrosinated in cycling cells. However, we have previously shown that detyrosinated tubulin accumulates in cancer cells during tumor progression in nude mice. Tubulin detyrosination, resulting from suppression of tubulin tyrosine ligase and the resulting unbalanced activity of tubulin-carboxypeptidase, apparently represents a strong selective advantage for cancer cells. We have now analyzed the occurrence and significance of tubulin detyrosination in human breast tumors. We studied a total of 134 breast cancer tumors from patients with or without known complications over a follow-up period of 31 +/- 10 months. The mean age of the patients at the time of diagnosis was 57 years. For each patient, detailed data concerning the histology and extension of the tumor were available. Tumor cells containing detyrosinated tubulin were visualized by immunohistochemical staining of paraffin-embedded tissue sections. Cancer cells with detyrosinated tubulin were observed in 53% of the tumors and were predominant in 19.4% of the tumors. Tubulin detyrosination correlated to a high degree of significance (P < 0.001) with a high Scarf-Bloom-Richardson (SBR) grade, a known marker of tumor aggressiveness. Among SBR grade 1 tumors, 3.8% were strongly positive for tubulin detyrosination compared with 65.4% of the SBR grade 3 tumors. The SBR component showing the strongest correlation with tubulin detyrosination was the mitotic score. In the entire patient population, neither the SBR grade nor the detyrosination index had significant prognostic value (P = 0.11, P = 0.27, respectively), whereas a combined index was significantly correlated with the clinical outcome (P = 0.02). A preliminary subgroup analysis indicated that tubulin detyrosination may define high- and low- risk groups in breast cancer tumors with an SBR grade of 2. Our study shows that tubulin detyrosination is a frequent occurrence in breast cancer, easy to detect, and linked to tumor aggressiveness
    corecore