618 research outputs found
Recommended from our members
Gene expression differs in susceptible and resistant amphibians exposed to Batrachochytrium dendrobatidis.
Chytridiomycosis, the disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has devastated global amphibian biodiversity. Nevertheless, some hosts avoid disease after Bd exposure even as others experience near-complete extirpation. It remains unclear whether the amphibian adaptive immune system plays a role in Bd defence. Here, we describe gene expression in two host species-one susceptible to chytridiomycosis and one resistant-following exposure to two Bd isolates that differ in virulence. Susceptible wood frogs (Rana sylvatica) had high infection loads and mortality when exposed to the more virulent Bd isolate but lower infection loads and no fatal disease when exposed to the less virulent isolate. Resistant American bullfrogs (R. catesbeiana) had high survival across treatments and rapidly cleared Bd infection or avoided infection entirely. We found widespread upregulation of adaptive immune genes and downregulation of important metabolic and cellular maintenance components in wood frogs after Bd exposure, whereas American bullfrogs showed little gene expression change and no evidence of an adaptive immune response. Wood frog responses suggest that adaptive immune defences may be ineffective against virulent Bd isolates that can cause rapid physiological dysfunction. By contrast, American bullfrogs exhibited robust resistance to Bd that is likely attributable, at least in part, to their continued upkeep of metabolic and skin integrity pathways as well as greater antimicrobial peptide expression compared to wood frogs, regardless of exposure. Greater understanding of these defences will ultimately help conservationists manage chytridiomycosis
The effect of intolerance of uncertainty on anxiety and depression, and their symptom networks, during the COVID-19 pandemic
Individuals vary in their ability to tolerate uncertainty. High intolerance of uncertainty (the tendency to react negatively to uncertain situations) is a known risk factor for mental health problems. In the current study we examined the degree to which intolerance of uncertainty predicted depression and anxiety symptoms and their interrelations across the first year of the COVID-19 pandemic. We examined these associations across three time points (May 2020 â April 2021) in an international sample of adults (N = 2087, Mean age = 41.13) from three countries (UK, USA, Australia) with varying degrees of COVID-19 risk. We found that individuals with high and moderate levels of intolerance of uncertainty reported reductions in depression and anxiety symptoms over time. However, symptom levels remained significantly elevated compared to individuals with low intolerance of uncertainty. Individuals with low intolerance of uncertainty had low and stable levels of depression and anxiety across the course of the study. Network analyses further revealed that the relationships between depression and anxiety symptoms became stronger over time among individuals with high intolerance of uncertainty and identified that feeling afraid showed the strongest association with intolerance of uncertainty. Our findings are consistent with previous work identifying intolerance of uncertainty as an important risk factor for mental health problems, especially in times marked by actual health, economic and social uncertainty. The results highlight the need to explore ways to foster resilience among individuals who struggle to tolerate uncertainty, as ongoing and future geopolitical, climate and health threats will likely lead to continued exposure to significant uncertainty
Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance
<p>Abstract</p> <p>Background</p> <p>Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population.</p> <p>Method</p> <p>In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N = 120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress.</p> <p>Results</p> <p>Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations.</p> <p>Discussion</p> <p>We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks</p> <p>Conclusion</p> <p>The proposed approach contributes to the pediatric neuroimaging literature by providing a useful way to conceptualize and measure task noncompliance and by providing simple cost effective tactics for improving the effectiveness of common reward-based protocols.</p
An objective-based prioritization approach to support trophic complexity through ecological restoration species mixes
Reassembling ecological communities and rebuilding habitats through active restoration treatments require curating the selection of plant species to use in seeding and planting mixes. Ideally, these mixes should be assembled based on attributes that support ecosystem function and services, promote plant and animal species interactions and ecological networks in restoration while balancing project constraints. Despite these critical considerations, it is common for species mixes to be selected opportunistically. Reframing the selection of seed mixes for restoration around ecological objectives is essential for success but accessible methods and tools are needed to support this effort. We developed a framework to optimize species seed mixes based on prioritizing plant species attributes to best support different objectives for ecosystem functions, services and trophic relationships such as pollination, seed dispersal and herbivory. We compared results to approaches where plant species are selected to represent plant taxonomic richness, dominant species and at random. We tested our framework in European alpine grasslands by identifying 176 plant species characteristic of the species pool, and identified 163 associated attributes affiliated to trophic relationships, ecosystem functions and services. In all cases, trophic relationships, ecosystem functions and services can be captured more efficiently through objective-based prioritization using the functional identity of plant species. Solutions (plant species lists) can be compared quantitatively, in terms of costs, species or objectives. We confirm that a random draw of plant species from the regional plant species pool cannot be assumed to support other trophic groups and ecosystem functions and services. Synthesis and Applications. Our framework is presented as a proof-of-concept to help restoration practitioners better apply quantitative decision support to plant species selection to efficiently meet ecological restoration outcomes. Our approach may be tailored to any restoration initiative, habitat or restoration targets where seeding or planting mixes will be applied in active treatments. As global priority and resources are increasingly placed into restoration, this approach could be advanced to help make efficient decisions for many stages of the restoration process
Observational Study Design in Veterinary Pathology, Part 1: Study Design
Observational studies are the basis for much of our knowledge of veterinary pathology and are highly relevant to the daily practice of pathology. However, recommendations for conducting pathology-based observational studies are not readily available. In part 1 of this series, we offer advice on planning and conducting an observational study with examples from the veterinary pathology literature. Investigators should recognize the importance of creativity, insight, and innovation in devising studies that solve problems and fill important gaps in knowledge. Studies should focus on specific and testable hypotheses, questions, or objectives. The methodology is developed to support these goals. We consider the merits and limitations of different types of analytic and descriptive studies, as well as of prospective vs retrospective enrollment. Investigators should define clear inclusion and exclusion criteria and select adequate numbers of study subjects, including careful selection of the most appropriate controls. Studies of causality must consider the temporal relationships between variables and the advantages of measuring incident cases rather than prevalent cases. Investigators must consider unique aspects of studies based on archived laboratory case material and take particular care to consider and mitigate the potential for selection bias and information bias. We close by discussing approaches to adding value and impact to observational studies. Part 2 of the series focuses on methodology and validation of methods
Age-Related Developmental and Individual Differences in the Influence of Social and Non-social Distractors on Cognitive Performance.
This study sought to examine age-related differences in the influences of social (neutral, emotional faces) and non-social/non-emotional (shapes) distractor stimuli in children, adolescents, and adults. To assess the degree to which distractor, or task-irrelevant, stimuli of varying social and emotional salience interfere with cognitive performance, children (N = 12; 8-12y), adolescents (N = 17; 13-17y), and adults (N = 17; 18-52y) completed the Emotional Identification and Dynamic Faces (EIDF) task. This task included three types of dynamically-changing distractors: (1) neutral-social (neutral face changing into another face); (2) emotional-social (face changing from 0% emotional to 100% emotional); and (3) non-social/non-emotional (shapes changing from small to large) to index the influence of task-irrelevant social and emotional information on cognition. Results yielded no age-related differences in accuracy but showed an age-related linear reduction in correct reaction times across distractor conditions. An age-related effect in interference was observed, such that children and adults showed slower response times on correct trials with socially-salient distractors; whereas adolescents exhibited faster responses on trials with distractors that included faces rather than shapes. A secondary study goal was to explore individual differences in cognitive interference. Results suggested that regardless of age, low trait anxiety and high effortful control were associated with interference to angry faces. Implications for developmental differences in affective processing, notably the importance of considering the contexts in which purportedly irrelevant social and emotional information might impair, vs. improve cognitive control, are discussed.NIMH R24 Research Network grant (MH67346, PI Ronald Dahl)
Recommended from our members
The function-dominance correlation drives the direction and strength of biodiversity-ecosystem functioning relationships
Community composition is a primary determinant of how biodiversity change influences ecosystem functioning and, therefore, the relationship between biodiversity and ecosystem functioning (BEF). We examine the consequences of community composition across six structurally realistic plant community models. We find that a positive correlation between species' functioning in monoculture versus their dominance in mixture with regard to a specific function (the "function-dominance correlation") generates a positive relationship between realised diversity and ecosystem functioning across species richness treatments. However, because realised diversity declines when few species dominate, a positive function-dominance correlation generates a negative relationship between realised diversity and ecosystem functioning within species richness treatments. Removing seed inflow strengthens the link between the function-dominance correlation and BEF relationships across species richness treatments but weakens it within them. These results suggest that changes in species' identities in a local species pool may more strongly affect ecosystem functioning than changes in species richness
Intensity Distribution of Modes in Surface Corrugated Waveguides
Exact calculations of transmission and reflection coefficients in surface
randomly corrugated optical waveguides are presented. As the length of the
corrugated part of the waveguide increases, there is a strong preference to
forward coupling through the lowest mode. An oscillating behavior of the
enhanced backscattering as a function of the wavelength is predicted. Although
the transport is strongly non isotropic, the analysis of the probability
distributions of the transmitted waves confirms in this configuration
distributions predicted by Random Matrix Theory for volume disorder
The interaction of gambling outcome and gambling harm-minimisation strategies for electronic gambling: the efficacy of computer generated self-appraisal messaging
It has been argued that generating pop-up messages during electronic gambling sessions, which cause a player to engage in self-appraisal of their gambling behaviour, instil greater control and awareness of behaviour (Monaghan, Computers in Human Behaviour, 25, 202â207, 2009). Consideration for the potential interaction between the messagingâs efficacy and gambling outcome (winning or losing) is lacking however. Thirty participants took part in a repeated-measures experiment where they gambled on the outcome of a computer-simulated gambling task. Outcome was manipulated by the experimenter to induce winning and losing streaks. Participants gambled at a significantly faster speed and a higher average stake size, which resulted in a greater betting intensity in the Loss condition compared to the Win condition. Computer generated self-appraisal messaging was then applied during the gambling session, which was able to significantly reduce the average speed of betting in the Loss condition only, demonstrating an interaction effect between computer generated messaging and gambling outcome
The functional trait spectrum of European temperate grasslands
Questions: What is the functional trait variation of European temperate grasslands and how does this reflect global patterns of plant form and function? Do habitat specialists show trait differentiation across habitat types?. Location: Europe. Methods: We compiled 18 regeneration and non-regeneration traits for a continental species pool consisting of 645 species frequent in five grassland types. These grassland types are widely distributed in Europe but differentiated by altitude, soil bedrock and traditional long-term management and disturbance regimes. We evaluated the multivariate trait space of this entire species pool and compared multi-trait variation and mean trait values of habitat specialists grouped by grassland type. Results: The first dimension of the trait space accounted for 23% of variation and reflected a gradient between fast-growing and slow-growing plants. Plant height and SLA contributed to both the first and second ordination axes. Regeneration traits mainly contributed to the second and following dimensions to explain 56% of variation across the first five axes. Habitat specialists showed functional differences between grassland types mainly through non-regeneration traits. Conclusions: The trait spectrum of plants dominating European temperate grasslands is primarily explained by growth strategies which are analogous to the trait variation observed at the global scale, and secondly by regeneration strategies. Functional differentiation of habitat specialists across grassland types is mainly related to environmental filtering linked with altitude and disturbance. This filtering pattern is mainly observed in non-regeneration traits, while most regeneration traits demonstrate multiple strategies within the same habitat type.EL, BJA, MTI, AM, PI and CB acknowledge the research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007â2013 under REA grant agreement no. 607785, as a part of the NAtive Seed Science TEchnology and Conservation (NASSTEC) Initial Training Network (ITN). BJA was further funded by the Marie Curie ClarĂnâCOFUND program of the Principality of Asturias and the European Union (ACB17â26). BJA and HB acknowledge support from the German Centre for Integrative Biodiversity Research (iDiv) HalleâJenaâLeipzig funded by the German Research Foundation (DFTG FZT 118) through the sPlot research platform. PI acknowledges support from the Rural & Environment Science & Analytical Services Division of the Scottish Government. KĂ thanks RO1567âIBB03/2018 for financial support
- âŠ