161 research outputs found

    Frequency Domain Simulations of Charge-Density-Wave Strains: Comparison with Electro-Optic Measurements

    Full text link
    We have studied changes in charge-density-wave strain under application of square-wave currents of variable amplitude and frequency by numerically solving the phase-slip augmented diffusion model introduced by Adelman et al (Phys. Rev. B 53, 1833 (1996)). The frequency dependence of the strain, at each position and amplitude, was fit to a modified harmonic oscillator expression, and the position and current dependence of the fitting parameters determined. In particular, the delay time (1/resonant frequency) vanishes adjacent to the contact and grows with distance from the contact, and both the delay time and relaxation time decrease rapidly with increasing current (and phase-slip rate), as experimentally observed in the electro-optic response of blue bronze. We have also found that pinning the phase at the contacts causes more rapid changes in strain between the contacts than allowing the phase to flow outside the contacts.Comment: 12 pages, 4 figures, submitted to Phys. Rev.

    Characterization of the Torsional Piezoelectric-like Response of Tantalum Trisulfide Associated with Charge-Density-Wave Depinning

    Full text link
    We have studied the frequency and voltage dependence of voltage-induced torsional strains in orthorhombic TaS3 [V. Ya. Pokrovskii, et al, Phys. Rev. Lett. 98, 206404 (2007)] by measuring the modulation of the resonant frequency of an RF cavity containing the sample. The strain has an onset voltage below the charge-density-wave (CDW) threshold voltages associated with changes in shear compliance and resistance, suggesting that the strain is associated with polarization of the CDW rather than CDW current. Measurements with square-wave voltages show that the strain is very sluggish, not even reaching its dc value at a frequency of 0.1 Hz, but the dynamics appear to be very sample dependent. By applying oscillating torque while biasing the sample with a dc current, we have also looked for strain induced voltage in the sample; none is observed at the low biases where the voltage-induced strains first occur, but an induced voltage is observed at higher biases, probably associated with strain-dependent CDW conductance.Comment: 11 pages, including 3 figures, to be published in Phys. Rev. B (Rapid Comm.

    Contact freezing: a review of experimental studies

    Get PDF
    This manuscript compiles both theoretical and experimental information on contact freezing with the aim to better understand this potentially important but still not well quantified heterogeneous freezing mode. There is no complete theory that describes contact freezing and how the energy barrier has to be overcome to nucleate an ice crystal by contact freezing. Experiments on contact freezing conducted using the cold plate technique indicate that it can initiate ice formation at warmer temperatures than immersion freezing. Additionally, a qualitative difference in the freezing temperatures between contact and immersion freezing has been found using different instrumentation and different ice nuclei. There is a lack of data on collision rates in most of the reported data, which inhibits a quantitative calculation of the freezing efficiencies. Thus, new or modified instrumentation to study contact nucleation in the laboratory and in the field are needed to identify the conditions at which contact nucleation could occur in the atmosphere. Important questions concerning contact freezing and its potential role for ice cloud formation and climate are also summarized

    Border Collision Bifurcations in a Generalized Model of Population Dynamics

    Get PDF
    We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested

    Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater

    Get PDF
    The sea-surface microlayer and bulk seawater can contain ice-nucleating particles (INPs) and these INPs can be emitted into the atmosphere. Our current understanding of the properties, concentrations, and spatial and temporal distributions of INPs in the microlayer and bulk seawater is limited. In this study we investigate the concentrations and properties of INPs in microlayer and bulk seawater samples collected in the Canadian Arctic during the summer of 2014. INPs were ubiquitous in the microlayer and bulk seawater with freezing temperatures in the immersion mode as high as −14 °C. A strong negative correlation (R = −0. 7, p = 0. 02) was observed between salinity and freezing temperatures (after correction for freezing depression by the salts). One possible explanation is that INPs were associated with melting sea ice. Heat and filtration treatments of the samples show that the INPs were likely heat-labile biological materials with sizes between 0.02 and 0.2 µm in diameter, consistent with previous measurements off the coast of North America and near Greenland in the Arctic. The concentrations of INPs in the microlayer and bulk seawater were consistent with previous measurements at several other locations off the coast of North America. However, our average microlayer concentration was lower than previous observations made near Greenland in the Arctic. This difference could not be explained by chlorophyll a concentrations derived from satellite measurements. In addition, previous studies found significant INP enrichment in the microlayer, relative to bulk seawater, which we did not observe in this study. While further studies are needed to understand these differences, we confirm that there is a source of INP in the microlayer and bulk seawater in the Canadian Arctic that may be important for atmospheric INP concentrations

    Tropospheric ozone sources and wave activity over Mexico City and Houston during MILAGRO/Intercontinental Transport Experiment (INTEX-B) Ozonesonde Network Study, 2006 (IONS-06)

    Get PDF
    During the INTEX-B (Intercontinental Chemical Transport Experiment)/ MILAGRO (Megacities Initiative: Local and Global Research Observations) experiments in March 2006 and the associated IONS-06 (INTEX Ozonesonde Network Study; <a href="http://croc.gsfc.nasa.gov/intexb/ions06.html" target="_blank">http://croc.gsfc.nasa.gov/intexb/ions06.html</a>), regular ozonesonde launches were made over 15 North American sites. The soundings were strategically positioned to study inter-regional flows and meteorological interactions with a mixture of tropospheric O<sub>3</sub> sources: local pollution; O<sub>3</sub> associated with convection and lightning; stratosphere-troposphere exchange. The variability of tropospheric O<sub>3</sub> over the Mexico City Basin (MCB; 19° N, 99° W) and Houston (30° N, 95° W) is reported here. MCB and Houston profiles displayed a double tropopause in most soundings and a subtropical tropopause layer with frequent wave disturbances, identified through O<sub>3</sub> laminae as gravity-wave induced. Ozonesondes launched over both cities in August and September 2006 (IONS-06, Phase 3) displayed a thicker tropospheric column O<sub>3</sub> (~7 DU or 15–20%) than in March 2006; nearly all of the increase was in the free troposphere. In spring and summer, O<sub>3</sub> laminar structure manifested mixed influences from the stratosphere, convective redistribution of O<sub>3</sub> and precursors, and O<sub>3</sub> from lightning NO. Stratospheric O<sub>3</sub> origins were present in 39% (MCB) and 60% (Houston) of the summer sondes. Comparison of summer 2006 O<sub>3</sub> structure with summer 2004 sondes (IONS-04) over Houston showed 7% less tropospheric O<sub>3</sub> in 2006. This may reflect a sampling contrast, August to mid-September 2006 instead of July-mid August 2004

    Dynamics of the Electro-Optic response of Blue Bronze

    Full text link
    We have studied the charge density wave (CDW) repolarization dynamics in blue bronze by applying square-wave voltages of different frequencies to the sample and measuring the changes in infrared transmittance, proportional to CDW strain. The frequency dependence of the electro-transmittance was fit to a modified harmonic oscillator response and the evolution of the parameters as functions of voltage, position, and temperature are discussed. Resonant frequencies decrease with distance from the current contacts, indicating that the resulting delays are intrinsic to the CDW with the strain effectively flowing from the contact. For a fixed position, the average relaxation time has a voltage dependence given by tau_0~V^-p, with 1<p<2. The temperature dependence of the fitting parameters shows that the dynamics are governed by both the force on the CDW and the CDW current: for a given force and position, both the relaxation and delay times are inversely proportional to the CDW current as temperature is varied. The long relaxation and delay times (~ 1 ms) suggest that the strain response involves the motion of macroscopic objects, presumably CDW phase dislocation lines.Comment: 36 pages, including 12 figures, submitted to Phys. Rev.

    Ice-nucleating ability of aerosol particles and possible sources at three coastal marine sites

    Get PDF
    Despite the importance of ice-nucleating particles (INPs) for climate and precipitation, our understanding of these particles is far from complete. Here, we investigated INPs at three coastal marine sites in Canada, two at mid-latitude (Amphitrite Point and Labrador Sea) and one in the Arctic (Lancaster Sound). For Amphitrite Point, 23 sets of samples were analyzed, and for Labrador Sea and Lancaster Sound, one set of samples was analyzed for each location. At all three sites, the ice-nucleating ability on a per number basis (expressed as the fraction of aerosol particles acting as an INP) was strongly dependent on the particle size. For example, at diameters of around 0.2µm, approximately 1 in 106 particles acted as an INP at −25°C, while at diameters of around 8µm, approximately 1 in 10 particles acted as an INP at −25°C. The ice-nucleating ability on a per surface-area basis (expressed as the surface active site density, ns) was also dependent on the particle size, with larger particles being more efficient at nucleating ice. The ns values of supermicron particles at Amphitrite Point and Labrador Sea were larger than previously measured ns values of sea spray aerosols, suggesting that sea spray aerosols were not a major contributor to the supermicron INP population at these two sites. Consistent with this observation, a global model of INP concentrations under-predicted the INP concentrations when assuming only marine organics as INPs. On the other hand, assuming only K-feldspar as INPs, the same model was able to reproduce the measurements at a freezing temperature of −25°C, but under-predicted INP concentrations at −15°C, suggesting that the model is missing a source of INPs active at a freezing temperature of −15°C
    • …
    corecore