2,728 research outputs found
Indebted households profiling: a knowledge discovery from database approach
A major challenge in consumer credit risk portfolio management is to classify households according to their risk profile. In order to build such risk profiles it is necessary to employ an approach that analyses data systematically in order to detect important relationships, interactions, dependencies and associations amongst the available continuous and categorical variables altogether and accurately generate profiles of most interesting household segments according to their credit risk. The objective of this work is to employ a knowledge discovery from database process to identify groups of indebted households and describe their profiles using a database collected by the Consumer Credit Counselling Service (CCCS) in the UK. Employing a framework that allows the usage of both categorical and continuous data altogether to find hidden structures in unlabelled data it was established the ideal number of clusters and such clusters were described in order to identify the households who exhibit a high propensity of excessive debt levels
Value relevance of accounting information in the pre- and post-IFRS accounting periods
This paper examines the value relevance of accounting information in the pre- and post-periods of International Financial Reporting Standards implementation using the models of Easton and Harris (1991) and Feltham and Ohlson (1995) for a sample of Greek companies. The results of the paper indicate that the effects of the IFRS reduced the incremental information content of book values of equity for stock prices. However, earnings’ incremental information content increased for the post-IFRS period. The results can be explained by the introduction of the fair value principle under the IFRS that brought major changes in book value but not in earnings.peer-reviewe
Augmented neural networks for modelling consumer indebtness
Consumer Debt has risen to be an important problem of modern societies, generating a lot of research in order to understand the nature of consumer indebtness, which so far its modelling has been carried out by statistical models. In this work we show that Computational Intelligence can offer a more holistic approach that is more suitable for the complex relationships an indebtness dataset has and Linear Regression cannot uncover. In particular, as our results show, Neural Networks achieve the best performance in modelling consumer indebtness, especially when they manage to incorporate the significant and experimentally verified results of the Data Mining process in the model, exploiting the flexibility Neural Networks offer in designing their topology. This novel method forms an elaborate framework to model Consumer indebtness that can be extended to any other real world application
Performance-effective operation below Vcc-min
Continuous circuit miniaturization and increased process variability point to a future with diminishing returns from dynamic voltage scaling. Operation below Vcc-min has been proposed recently as a mean to reverse this trend. The goal of this paper is to minimize the performance loss due to reduced cache capacity when operating below Vcc-min. A simple method is proposed: disable faulty blocks at low voltage. The method is based on observations regarding the distributions of faults in an array according to probability theory. The key lesson, from the probability analysis, is that as the number of uniformly distributed random faulty cells in an array increases the faults increasingly occur in already faulty blocks. The probability analysis is also shown to be useful for obtaining insight about the reliability implications of other cache techniques. For one configuration used in this paper, block disabling is shown to have on the average 6.6% and up to 29% better performance than a previously proposed scheme for low voltage cache operation. Furthermore, block-disabling is simple and less costly to implement and does not degrade performance at or above Vcc-min operation. Finally, it is shown that a victim-cache enables higher and more deterministic performance for a block-disabled cache
Biomarker clustering of colorectal cancer data to complement clinical classification
In this paper, we describe a dataset relating to
cellular and physical conditions of patients who are
operated upon to remove colorectal tumours. This data
provides a unique insight into immunological status at the
point of tumour removal, tumour classification and postoperative survival. Attempts are made to cluster this dataset and important subsets of it in an effort to characterize the data and validate existing standards for tumour classification. It is apparent from optimal clustering that existing tumour classification is largely unrelated to immunological factors within a patient and that there may be scope for re-evaluating treatment options and survival estimates based on a combination of tumour physiology and patient histochemistry
- …
