55 research outputs found

    A homozygous loss-of-function mutation in PTPN14 causes a syndrome of bilateral choanal atresia and early infantile-onset lymphedema

    Get PDF
    A homozygous truncating mutation in nonreceptor tyrosine phosphatase 14 (PTPN14) has recently been associated with an extremely rare autosomal recessive syndrome of congenital posterior choanal atresia and childhood-onset lymphedema. PTPN14 has been shown to interact directly with the vascular endothelial growth factor receptor 3 (VEGFR3), a receptor tyrosine kinase essential for lymphangiogenesis. Here we present an Iranian family with a single child affected by high-arched palate, congenital hypothyroidism, dysmorphic face, bilateral choanal atresia and infantile-onset lymphedema. Screening of the PTPN14 revealed a novel homozygous frameshift mutation in exon 4 predicted to result in premature truncation of the polypeptide product, which segregated with the disease phenotype. To our knowledge, this is the second family with “choanal atresia and lymphedema syndrome” to be reported worldwide. In contrast to the first reported family that showed lymphedema in late childhood, the patient described here displays lymphedema in her lower limbs at early infancy associated with growth delay, mild facial swelling, congenital hypothyroidism and some minor developmental abnormalities. This report confirms the causality of PTPN14 loss-of-function mutations and further expands the clinical phenotype of this rare genetic syndrome

    Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NBS1 is a key DNA repair protein in the homologous recombination repair pathway and a signal modifier in the intra-S phase checkpoint that plays important roles in maintaining genomic stability. The <it>NBS1 </it>8360G>C (<it>Glu185Gln</it>) is one of the most commonly studied polymorphisms of the gene for their association with risk of cancers, but the results are conflicting.</p> <p>Methods</p> <p>We performed a meta-analysis using 16 eligible case-control studies (including 17 data sets) with a total of 9,734 patients and 10,325 controls to summarize the data on the association between the <it>NBS1 </it>8360G>C (E185Q) polymorphism and cancer risk.</p> <p>Results</p> <p>Compared with the common 8360GG genotype, the carriers of variant genotypes (i.e., 8360 GC/CC) had a 1.06-fold elevated risk of cancer (95% CI = 1.00–1.12, <it>P </it>= 0.05) in a dominant genetic model as estimated in a fixed effect model. However, the association was not found in an additive genetic model (CC <it>vs </it>GG) (odds ratio, OR = 0.98, 95% CI = 0.85–1.13, <it>P </it>= 0.78) nor in a recessive genetic model (CC <it>vs </it>GC +GG) (OR = 0.94, 95% CI = 0.82–1.07, <it>P </it>= 0.36). The effect of the 8360G>C (E185Q) polymorphism was further evaluated in stratification analysis. It was demonstrated that the increased risk of cancer associated with 8360G>C variant genotypes was more pronounced in the Caucasians (OR = 1.07, 95% CI = 1.01–1.14, <it>P </it>= 0.03).</p> <p>Conclusion</p> <p>Our meta-analysis suggests that the <it>NBS1 </it>E185Q variant genotypes (8360 <it>GC/CC</it>) might be associated with an increased risk of cancer, especially in Caucasians.</p

    Effect of occupational exposure to cytostatics and nucleotide excision repair polymorphism on chromosomal aberrations frequency

    Get PDF
    Authors evaluated the incidence of total chromosomal aberrations (CA) and their types – chromatid-type (CTA) and chromosome-type (CSA) in peripheral blood lymphocytes from 72 oncologic unit's workers occupationally exposed to cytostatics in relationship to polymorphisms of DNA repair genes XPD, XPG and XPC. The cytogenetic analysis was used for determination of chromosomal aberrations frequency and PCR-RFLP method for polymorphisms of genes. Statistically higher frequency of total CA was detected in exposed group as compared to control (1.90±1.34% vs. 1.26±0.93%; Mann-Whitney U-test, p=0.001). There was not detected any difference between CTA and CSA (0.92±1.04% vs. 0.98±1.17%). Similarly, in genes XPD exon 23 and XPC exon 15 wasn't detected any difference neither in total chromosomal aberrations nor in CTA and CSA types. Statistically significant decrease of total chromosomal aberrations and CTA-type with presence of variant allele C was detected in gene XPG exon 15. Authors pointed out the importance of individual susceptibility factors in evaluation of effects of genotoxic agents, in that event, when the concentration does not meet the occupational exposure limit

    A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia

    Get PDF
    We have identified a novel gene in a genome-wide, double-strand break DNA repair RNAi screen and show that is involved in the neurological disease hereditary spastic paraplegia

    Tyrosine phosphatases as a superfamily of tumor suppressors in colorectal cancer

    No full text
    Phosphorylation and dephosphorylation processes catalyzed by numerous kinases and phosphorylases are essential for cell homeostasis and may lead to disturbances in a variety of vital cellular pathways, such as cell proliferation and differentiation, and thus to complex diseases including cancer. As over 80 % of all oncogenes encode protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), which can reverse the effects of tyrosine kinases, are very important tumor suppressors. Alterations in tyrosine kinase and phosphatase genes including point mutations, changes in epigenetic regulation, as well as chromosomal aberrations involving regions critical to these genes, are frequently observed in a variety of cancers. Colorectal cancer (CRC) is one of the most common cancers in humans. CRCs occur in a familial (about 15 % of all cases), hereditary (about 5%) and sporadic (almost 75-80 %) form. As genetic-environmental interrelations play an important role in the susceptibility to sporadic forms of CRCs, many studies are focused on genetic alterations in such tumors. Mutational analysis of the tyrosine phosphatome in CRCs has identified somatic mutations in PTPRG, PTPRT, PTPN3, PTPN13 and PTPN14. The majority of these mutations result in a loss of protein function. Also, alterations in the expression of these genes, such as decreased expression of PTPRR, PTPRO, PTPRG and PTPRD, mediated by epigenetic mechanisms have been observed in a variety of tumors. Since cancer is a social and global problem, there will be a growing number of studies on alterations in the candidate cancer genes, including protein kinases and phosphatases, to determine the origin, biology and potential pathways for targeted anticancer therapy

    Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine

    No full text
    Over the last decades, transcriptome profiling emerged as one of the most powerful approaches in oncology, providing prognostic and predictive utility for cancer management. The development of novel technologies, such as revolutionary next-generation sequencing, enables the identification of cancer biomarkers, gene signatures, and their aberrant expression affecting oncogenesis, as well as the discovery of molecular targets for anticancer therapies. Transcriptomics contribute to a change in the holistic understanding of cancer, from histopathological and organic to molecular classifications, opening a more personalized perspective for tumor diagnostics and therapy. The further advancement on transcriptome profiling may allow standardization and cost reduction of its analysis, which will be the next step for transcriptomics to become a canon of contemporary cancer medicine

    Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine

    No full text
    Over the last decades, transcriptome profiling emerged as one of the most powerful approaches in oncology, providing prognostic and predictive utility for cancer management. The development of novel technologies, such as revolutionary next-generation sequencing, enables the identification of cancer biomarkers, gene signatures, and their aberrant expression affecting oncogenesis, as well as the discovery of molecular targets for anticancer therapies. Transcriptomics contribute to a change in the holistic understanding of cancer, from histopathological and organic to molecular classifications, opening a more personalized perspective for tumor diagnostics and therapy. The further advancement on transcriptome profiling may allow standardization and cost reduction of its analysis, which will be the next step for transcriptomics to become a canon of contemporary cancer medicine
    corecore