4,053 research outputs found

    Anisotropic adaptive kernel deconvolution

    Get PDF
    International audienceIn this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel estimators of a signal density ff measured with additive error. For this, we generalize Fan's~(1991) estimators to multidimensional setting and use a bandwidth selection device in the spirit of Goldenschluger and Lepski's~(2011) proposal fr density estimation without noise. We consider first the pointwise setting and then, we study the integrated risk. Our estimators depend on an automatically selected random bandwidth. We assume both ordinary and super smooth components for measurement errors, which have known density. We also consider both anisotropic H\"{o}lder and Sobolev classes for ff. We provide non asymptotic risk bounds and asymptotic rates for the resulting data driven estimator, which is proved to be adaptive. We provide an illustrative simulation study, involving the use of Fast Fourier Transform algorithms. We conclude by a proposal of extension of the method to the case of unknown noise density, when a preliminary pure noise sample is available

    Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry

    Full text link
    Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NACO/VLT at Ks and Lp filters were obtained and analysed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales. However, our model suffers from remaining inconsistencies between SED modelling and the interferometric data. Moreover, the BrG spectroastrometric signal indicates that the core of IRS 9A exhibits some form of complexity such as asymmetries in the disk. Future high-resolution observations are required to confirm the disk/envelope model and to flesh out the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14 figure

    High resolution observations of the outer disk around T Cha: the view from ALMA

    Full text link
    T Cha is a young star surrounded by a transitional disk with signatures of planet formation. We have obtained high-resolution and high-sensitivity ALMA observations of T Cha in the CO(3{\rm CO}(3--2)2), 13CO(3{\rm ^{13}CO}(3--2)2), and CS(7{\rm CS}(7--6)6) emission lines to reveal the spatial distribution of the gaseous disk around the star. In order to study the dust within the disk we have also obtained continuum images at 850ÎŒ\mum from the line-free channels. We have spatially resolved the outer disk around T Cha. Using the CO(3-2) emission we derive a radius of ∌\sim230 AU. We also report the detection of the 13^{13}CO(3-2) and the CS(7-8) molecular emissions, which show smaller radii than the CO(3-2) detection. The continuum observations at 850ÎŒ\mum allow the spatial resolution of the dusty disk, which shows two emission bumps separated by ∌\sim40AU, consistent with the presence of a dust gap in the inner regions of the disk, and an outer radius of ∌\sim80AU. Therefore, T Cha is surrounded by a compact dusty disk and a larger and more diffuse gaseous disk, as previously observed in other young stars. The continuum intensity profiles are different at both sides of the disk suggesting possible dust asymmetries. We derive an inclination of i(deg)=67±\pm5, and a position angle of PA (deg)= 113±\pm6, for both the gas and dust disks. The comparison of the ALMA data with radiative transfer models shows that the gas and dust components can only be simultaneously reproduced when we include a tapered edge prescription for the surface density profile. The best model suggests that most of the disk mass is placed within a radius of R<R< 50AU. Finally, we derive a dynamical mass for the central object of M∗M_{*}=1.5±\pm0.2M⊙_{\odot}, comparable to the one estimated with evolutionary models for an age of ∌\sim10Myr.Comment: 5 pages, 5 figures, accepted for publication in A&A Letter

    Wide range and tunable linear TMR sensor using two exchange pinned electrodes

    Full text link
    A magnetic tunnel junction sensor is proposed, with both the detection and the reference layers pinned by IrMn. Using the differences in the blocking temperatures of the IrMn films with different thicknesses, crossed anisotropies can be induced between the detection and the reference electrodes. The pinning of the sensing electrode ensures a linear and reversible output. It also allows tuning both the sensitivity and the linear range of the sensor. The authors show that the sensitivity varies linearly with the ferromagnetic thickness of the detection electrode. It is demonstrated that an increased thickness leads to a rise of sensitivity and a reduction of the operating range

    Nanostructuring lithium niobate substrates by focused ion beam milling

    Full text link
    We report on two novel ways for patterning Lithium Niobate (LN) at submicronic scale by means of focused ion beam (FIB) bombardment. The first method consists of direct FIB milling on LiNbO3 and the second one is a combination of FIB milling on a deposited metallic layer and subsequent RIE (Reactive Ion Etching) etching. FIB images show in both cases homogeneous structures with well reproduced periodicity. These methods open the way to the fabrication of photonic crystals on LiNbO3 substrates

    Simultaneous measurements of PIV, anisole-PLIF and OH-PLIF for investigating back-supported stratified flame propagation in lean and nonflammable mixtures

    Get PDF
    International audienceIn an effort to reduce pollutant emissions and increase energy efficiency, partially premixed combustion has been integrated into many new combustion technologies. The present study investigated lean back-supported flames in a stratified combustion regime. This strategy leads to hybrid combustion regimes, ranging between fully premixed and fully non-premixed reactants, with a large panel of flame structures and properties requiring to be characterized. Outwardly propagating flames were observed following ignition under laminar stratification conditions generated in a constant volume vessel. The quantitative analysis of the flame properties relied on simultaneous PIV measurements to obtain local flame burning velocities and stretch rates and used anisole-PLIF measurements to calculate the equivalence ratio. Simultaneous OH-PLIF measurements were used to differentiate between the burned gas boundaries and the active flame front. This differentiation was necessary to investigate the nonflammable mixture. The OH-gradient measurement proved to be suitable for distinguishing burned gas interfaces from active flame fronts. Simultaneous OH-and anisole-PLIF measurements were used to estimate the thermal flame thickness. Two flame families were investigated: in family A the flame was ignited in a lean mixture (φ=0.6) with a rich stratification; in family B the mixture in the chamber was nonflammable. In rich mixtures ignition compensated for the non-equidiffusive effects of the lean propane flame and reinforced the flame's stretch resistance. Both a flammable and a nonflammable mixture were investigated to determine the time scales of the back-supported propagation for the given stratification. The enhanced combustion regime allowed the flame to propagate with an active flame front, even in the nonflammable mixture. Combustion continued for a few milliseconds before the flame extinguished. The richer the stratification, the longer the combustion lasted in the nonflammable mixture

    beta Pic b position relative to the Debris Disk

    Full text link
    Context. We detected in 2009 a giant, close-by planet orbiting {\beta} Pic, a young star surrounded with a disk, extensively studied for more than 20 years. We showed that if located on an inclined orbit, the planet could explain several peculiarities of {\beta} Pictoris system. However, the available data did not permit to measure the inclination of {\beta} Pic b with respect to the disk, and in particular to establish in which component of the disk - the main, extended disk or the inner inclined component/disk-, the planet was located. Comparison between the observed planet position and the disk orientation measured on previous imaging data was not an option because of potential biases in the measurements. Aims. Our aim is to measure precisely the planet location with respect to the dust disk using a single high resolution image, and correcting for systematics or errors that degrades the precision of the disk and planet relative position measurements. Methods. We gathered new NaCo data at Ks band, with a set-up optimized to derive simultaneously the orientation(s) of the disk(s) and that of the planet. Results. We show that the projected position of {\beta} Pic b is above the midplane of the main disk. With the current data and knowledge on the system, this implies that {\beta} Pic b cannot be located in the main disk. The data rather suggest the planet being located in the inclined component.Comment: 13 pages, 6 figures, to appear in Astronomy and Astrophysic

    The interferometric baselines and GRAVITY astrometric error budget

    Full text link
    GRAVITY is a new generation beam combination instrument for the VLTI. Its goal is to achieve microarsecond astrometric accuracy between objects separated by a few arcsec. This 10610^6 accuracy on astrometric measurements is the most important challenge of the instrument, and careful error budget have been paramount during the technical design of the instrument. In this poster, we will focus on baselines induced errors, which is part of a larger error budget.Comment: SPIE Meeting 2014 -- Montrea

    The near-infrared spectral energy distribution of {\beta} Pictoris b

    Full text link
    A gas giant planet has previously been directly seen orbiting at 8-10 AU within the debris disk of the ~12 Myr old star {\beta} Pictoris. The {\beta} Pictoris system offers the rare opportunity to study the physical and atmospheric properties of an exoplanet placed on a wide orbit and to establish its formation scenario. We obtained J (1.265 {\mu}m), H (1.66 {\mu}m), and M' (4.78 {\mu}m) band angular differential imaging of the system between 2011 and 2012. We detect the planetary companion in our four-epoch observations. We estimate J = 14.0 +- 0.3, H = 13.5 +- 0.2, and M' = 11.0 +- 0.3 mag. Our new astrometry consolidates previous semi-major axis (sma=8-10 AU) and excentricity (e <= 0.15) estimates of the planet. These constraints, and those derived from radial velocities of the star provides independent upper limits on the mass of {\beta} Pictoris b of 12 and 15.5 MJup for semi-major axis of 9 and 10 AU. The location of {\beta} Pictoris b in color-magnitude diagrams suggests it has spectroscopic properties similar to L0-L4 dwarfs. This enables to derive Log10(L/Lsun) = -3.87 +- 0.08 for the companion. The analysis with 7 PHOENIX-based atmospheric models reveals the planet has a dusty atmosphere with Teff = 1700 +- 100 K and log g = 4.0+- 0.5. "Hot-start" evolutionary models give a new mass of 10+3-2 MJup from Teff and 9+3-2 MJup from luminosity. Predictions of "cold-start" models are inconsistent with independent constraints on the planet mass. "Warm-start" models constrain the mass to M >= 6MJup and the initial entropies to values (Sinit >= 9.3Kb/baryon), intermediate between those considered for cold/hot-start models, but likely closer to those of hot-start models.Comment: 19 pages, accepted in Astronomy and Astrophysic
    • 

    corecore