4,491 research outputs found
Chiral effective field theory for nuclear matter
We report on the recent developments of a new effective field theory for
nuclear matter [1,2,3]. We present first the nuclear matter chiral power
counting that takes into account both short-- and long--range inter-nucleon
interactions. It also identifies non-perturbative strings of diagrams, related
to the iteration of nucleon-nucleon interactions, which have to be re-summed.
The methods of unitary chiral perturbation theory has been shown to be a useful
tool in order to perform those resummations. Results up to next-to-leading
order for the ground state energy per particle of nuclear matter, the in-medium
chiral quark condensate and pion self-energy are discussed.Comment: Plenary talk at Chiral10 WORKSHOP, 21-24 Jun 2010, Valencia, Spai
The chiral quark condensate and pion decay constant in nuclear matter at next-to-leading order
Making use of the recently developed chiral power counting for the physics of
nuclear matter [1,2], we evaluate the in-medium chiral quark condensate up to
next-to-leading order for both symmetric nuclear matter and neutron matter. Our
calculation includes the full in-medium iteration of the leading order local
and one-pion exchange nucleon-nucleon interactions. Interestingly, we find a
cancellation between the contributions stemming from the quark mass dependence
of the nucleon mass appearing in the in-medium nucleon-nucleon interactions.
Only the contributions originating from the explicit quark mass dependence of
the pion mass survive. This cancellation is the reason of previous observations
concerning the dominant role of the long-range pion contributions and the
suppression of short-range nucleon-nucleon interactions. We find that the
linear density contribution to the in-medium chiral quark condensate is only
slightly modified for pure neutron matter by the nucleon-nucleon interactions.
For symmetric nuclear matter the in-medium corrections are larger, although
smaller compared to other approaches due to the full iteration of the lowest
order nucleon-nucleon tree-level amplitudes. Our calculation satisfies the
Hellmann-Feynman theorem to the order worked out. Also we address the problem
of calculating the leading in-medium corrections to the pion decay constant. We
find that there are no extra in-medium corrections that violate the
Gell-Mann-Oakes-Renner relation up to next-to-leading order.Comment: 21 pages, 9 figure
Switching the magnetic configuration of a spin valve by current induced domain wall motion
We present experimental results on the displacement of a domain wall by
injection of a dc current through the wall. The samples are 1 micron wide long
stripes of a CoO/Co/Cu/NiFe classical spin valve structure.
The stripes have been patterned by electron beam lithography. A neck has been
defined at 1/3 of the total length of the stripe and is a pinning center for
the domain walls, as shown by the steps of the giant magnetoresistance curves
at intermediate levels (1/3 or 2/3) between the resistances corresponding to
the parallel and antiparallel configurations. We show by electric transport
measurements that, once a wall is trapped, it can be moved by injecting a dc
current higher than a threshold current of the order of magnitude of 10^7
A/cm^2. We discuss the different possible origins of this effect, i.e. local
magnetic field created by the current and/or spin transfer from spin polarized
current.Comment: 3 pages, 3 figure
High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter
Context. High contrast imaging is a powerful technique to search for gas
giant planets and brown dwarfs orbiting at separation larger than several AU.
Around solar-type stars, giant planets are expected to form by core accretion
or by gravitational instability, but since core accretion is increasingly
difficult as the primary star becomes lighter, gravitational instability would
be the a probable formation scenario for yet-to-be-found distant giant planets
around a low-mass star. A systematic survey for such planets around M dwarfs
would therefore provide a direct test of the efficiency of gravitational
instability. Aims. We search for gas giant planets orbiting around late-type
stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep
high resolution images of 16 targets with the adaptive optic system of VLT-NACO
in the Lp band, using direct imaging and angular differential imaging. This is
currently the largest and deepest survey for Jupiter-mass planets around
Mdwarfs. We developed and used an integrated reduction and analysis pipeline to
reduce the images and derive our 2D detection limits for each target. The
typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes
beyond 1". For each target we also determine the probability of detecting a
planet of a given mass at a given separation in our images. Results. We derived
accurate detection probabilities for planetary companions, taking into account
orbital projection effects, with in average more than 50% probability to detect
a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong
constraints on the existence of Jupiter-mass planets around this sample of
young M-dwarfs.Comment: Accepted for publication in A&
beta Pic b position relative to the Debris Disk
Context. We detected in 2009 a giant, close-by planet orbiting {\beta} Pic, a
young star surrounded with a disk, extensively studied for more than 20 years.
We showed that if located on an inclined orbit, the planet could explain
several peculiarities of {\beta} Pictoris system. However, the available data
did not permit to measure the inclination of {\beta} Pic b with respect to the
disk, and in particular to establish in which component of the disk - the main,
extended disk or the inner inclined component/disk-, the planet was located.
Comparison between the observed planet position and the disk orientation
measured on previous imaging data was not an option because of potential biases
in the measurements. Aims. Our aim is to measure precisely the planet location
with respect to the dust disk using a single high resolution image, and
correcting for systematics or errors that degrades the precision of the disk
and planet relative position measurements. Methods. We gathered new NaCo data
at Ks band, with a set-up optimized to derive simultaneously the orientation(s)
of the disk(s) and that of the planet. Results. We show that the projected
position of {\beta} Pic b is above the midplane of the main disk. With the
current data and knowledge on the system, this implies that {\beta} Pic b
cannot be located in the main disk. The data rather suggest the planet being
located in the inclined component.Comment: 13 pages, 6 figures, to appear in Astronomy and Astrophysic
An aperture masking mode for the MICADO instrument
MICADO is a near-IR camera for the Europea ELT, featuring an extended field
(75" diameter) for imaging, and also spectrographic and high contrast imaging
capabilities. It has been chosen by ESO as one of the two first-light
instruments. Although it is ultimately aimed at being fed by the MCAO module
called MAORY, MICADO will come with an internal SCAO system that will be
complementary to it and will deliver a high performance on axis correction,
suitable for coronagraphic and pupil masking applications. The basis of the
pupil masking approach is to ensure the stability of the optical transfer
function, even in the case of residual errors after AO correction (due to non
common path errors and quasi-static aberrations). Preliminary designs of pupil
masks are presented. Trade-offs and technical choices, especially regarding
redundancy and pupil tracking, are explained.Comment: SPIE 2014 Proceeding -- Montrea
The near-infrared spectral energy distribution of {\beta} Pictoris b
A gas giant planet has previously been directly seen orbiting at 8-10 AU
within the debris disk of the ~12 Myr old star {\beta} Pictoris. The {\beta}
Pictoris system offers the rare opportunity to study the physical and
atmospheric properties of an exoplanet placed on a wide orbit and to establish
its formation scenario. We obtained J (1.265 {\mu}m), H (1.66 {\mu}m), and M'
(4.78 {\mu}m) band angular differential imaging of the system between 2011 and
2012. We detect the planetary companion in our four-epoch observations. We
estimate J = 14.0 +- 0.3, H = 13.5 +- 0.2, and M' = 11.0 +- 0.3 mag. Our new
astrometry consolidates previous semi-major axis (sma=8-10 AU) and excentricity
(e <= 0.15) estimates of the planet. These constraints, and those derived from
radial velocities of the star provides independent upper limits on the mass of
{\beta} Pictoris b of 12 and 15.5 MJup for semi-major axis of 9 and 10 AU. The
location of {\beta} Pictoris b in color-magnitude diagrams suggests it has
spectroscopic properties similar to L0-L4 dwarfs. This enables to derive
Log10(L/Lsun) = -3.87 +- 0.08 for the companion. The analysis with 7
PHOENIX-based atmospheric models reveals the planet has a dusty atmosphere with
Teff = 1700 +- 100 K and log g = 4.0+- 0.5. "Hot-start" evolutionary models
give a new mass of 10+3-2 MJup from Teff and 9+3-2 MJup from luminosity.
Predictions of "cold-start" models are inconsistent with independent
constraints on the planet mass. "Warm-start" models constrain the mass to M >=
6MJup and the initial entropies to values (Sinit >= 9.3Kb/baryon), intermediate
between those considered for cold/hot-start models, but likely closer to those
of hot-start models.Comment: 19 pages, accepted in Astronomy and Astrophysic
A giant planet imaged in the disk of the young star Beta Pictoris
Here we show that the ~10 Myr Beta Pictoris system hosts a massive giant
planet, Beta Pictoris b, located 8 to 15 AU from the star. This result confirms
that gas giant planets form rapidly within disks and validates the use of disk
structures as fingerprints of embedded planets. Among the few planets already
imaged, Beta Pictoris b is the closest to its parent star. Its short period
could allow recording the full orbit within 17 years.Comment: 4 pages, 2 figures. Published online 10 June 2010;
10.1126/science.1187187. To appear in Scienc
The GRAVITY fringe tracker: correlation between optical path residuals and atmospheric parameters
After the first year of observations with the GRAVITY fringe tracker, we
compute correlations between the optical path residuals and atmospheric and
astronomical parameters. The median residuals of the optical path residuals are
180 nm on the ATs and 270 nm on the UTs. The residuals are uncorrelated with
the target magnitudes for Kmag below 5.5 on ATs (9 on UTs). The correlation
with the coherence time is however extremely clear, with a drop-off in fringe
tracking performance below 3 ms.Comment: submitted to SPIE Astronomical Telescopes & Instrumentation 201
Do children with uncomplicated severe acute malnutrition need antibiotics? A systematic review and meta-analysis.
Current (1999) World Health Organization guidelines recommend giving routine antibiotics (AB) for all children with severe acute malnutrition (SAM), even if they have uncomplicated disease with no clinically obvious infections. We examined the evidence behind this recommendation
- …