1,841 research outputs found

    Functional Characterisation of Alpha-Galactosidase A Mutations as a Basis for a New Classification System in Fabry Disease

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study has been supported partially by an unrestricted scientific grant from Shire Human Genetic Therapies (Germany

    Theoretical study of neutrino-induced coherent pion production off nuclei at T2K and MiniBooNE energies

    Get PDF
    We have developed a model for neutrino-induced coherent pion production off nuclei in the energy regime of interest for present and forthcoming neutrino oscillation experiments. It is based on a microscopic model for pion production off the nucleon that, besides the dominant Delta pole contribution, takes into account the effect of background terms required by chiral symmetry. Moreover, the model uses a reduced nucleon-to-Delta resonance axial coupling, which leads to coherent pion production cross sections around a factor two smaller than most of the previous theoretical estimates. In the coherent production, the main nuclear effects, namely medium corrections on the Delta propagator and the final pion distortion, are included. We have improved on previous similar models by taking into account the nucleon motion and employing a more sophisticated optical potential. As found in previous calculations the modification of the Delta self-energy inside the nuclear medium strongly reduces the cross section, while the final pion distortion mainly shifts the peak position to lower pion energies. The angular distribution profiles are not much affected by nuclear effects. Nucleon motion increases the cross section by 15% at neutrino energies of 650 MeV, while Coulomb effects on charged pions are estimated to be small. Finally, we discuss at length the deficiencies of the Rein-Sehgal pion coherent production model for neutrino energies below 2 GeV, and in particular for the MiniBooNE and T2K experiments. We also predict flux averaged cross sections for these two latter experiments and K2K.Comment: 19 latex pages, 10 figures, 2 tables. Minor changes. Version accepted for publication in Physical Review

    Mechanical and Tribological Properties of Carbon-Based Graded Coatings

    Get PDF
    The paper presents research on coatings with advanced architecture, composed of a Cr/Cr2N ceramic/metal multilayer and graded carbon layers with varying properties from Cr/a-C:H to a-C:N. The microstructure of the coatings was analysed using transmission electron microscopy and Energy Dispersive Spectroscopy, the mechanical properties were tested by nanoindentation, spherical indentation, and scratch testing, and tribological tests were also conducted. The proper selection of subsequent layers in graded coatings allowed high hardness and fracture resistance to be obtained as well as good adhesion to multilayers. Moreover, these coatings have higher wear resistance than single coatings and a friction coefficient equal to 0.25

    Modelling of the Impurity Flow in the Tokamak Scrape-off Layer

    No full text

    The Search for Stable, Massive, Elementary Particles

    Full text link
    In this paper we review the experimental and observational searches for stable, massive, elementary particles other than the electron and proton. The particles may be neutral, may have unit charge or may have fractional charge. They may interact through the strong, electromagnetic, weak or gravitational forces or through some unknown force. The purpose of this review is to provide a guide for future searches - what is known, what is not known, and what appear to be the most fruitful areas for new searches. A variety of experimental and observational methods such as accelerator experiments, cosmic ray studies, searches for exotic particles in bulk matter and searches using astrophysical observations is included in this review.Comment: 34 pages, 8 eps figure

    Electron correlations in the antiproton energy-loss distribution in He

    Get PDF
    We present ab initio calculations of the electronic differential energy-transfer cross sections for antiprotons with energies between 3 keV and 1 MeV interacting with helium. By comparison with simulations employing the mean-field description based on the single-active electron approximation we are able to identify electron correlation effects in the stopping and straggling cross sections. Most remarkably, we find that straggling exceeds the celebrated Bohr straggling limit when correlated shake-up processes are included
    corecore