18 research outputs found
Role of the mitochondrial protein MCJ in the development of non-alcoholic fatty liver disease (NAFLD)
[EN] Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western world, affecting 20-30% of the general population. NAFLD comprises a broad range of clinical disorders from pure steatosis and non-alcoholic steatohepatitis (NASH) to cirrhosis and liver cancer. However, the molecular mechanisms underlying NAFLD progression are not completely understood and the tools for its early diagnosis are limited. Notably, mitochondrial alterations have been described in a variety of chronic liver diseases, including NAFLD. Recently, MCJ, an inner mitochondrial membrane protein, has emerged as the first endogenous inhibitor of the electron transport chain complex I. In this project, we studied the role of MCJ in the pathogenesis of NAFLD and investigated the effect that the absence of MCJ exerts in the progression of the disease. Interestingly, we found that MCJ expression is increased during NAFLD. Moreover, MCJ silencing protected against hepatic lipid accumulation, liver injury and inflammation in the methionine-choline deficient mouse model of NASH. Apparently, loss of MCJ led to increased fatty acid β- oxidation, Krebs cycle function, and glycolysis rate, which maintained mitochondrial respiration and ATP production through oxidative phosphorylation. In other words, these metabolic adaptations were able to counteract the cytotoxic effects of fat accumulation on mitochondria and ultimately on hepatocytes. Altogether, MCJ arises as a key regulator of NAFLD paving the way for new promising therapeutic approaches
Role of the mitochondrial protein MCJ in the development of non-alcoholic fatty liver disease (NAFLD)
[EN] Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western world, affecting 20-30% of the general population. NAFLD comprises a broad range of clinical disorders from pure steatosis and non-alcoholic steatohepatitis (NASH) to cirrhosis and liver cancer. However, the molecular mechanisms underlying NAFLD progression are not completely understood and the tools for its early diagnosis are limited. Notably, mitochondrial alterations have been described in a variety of chronic liver diseases, including NAFLD. Recently, MCJ, an inner mitochondrial membrane protein, has emerged as the first endogenous inhibitor of the electron transport chain complex I. In this project, we studied the role of MCJ in the pathogenesis of NAFLD and investigated the effect that the absence of MCJ exerts in the progression of the disease. Interestingly, we found that MCJ expression is increased during NAFLD. Moreover, MCJ silencing protected against hepatic lipid accumulation, liver injury and inflammation in the methionine-choline deficient mouse model of NASH. Apparently, loss of MCJ led to increased fatty acid β- oxidation, Krebs cycle function, and glycolysis rate, which maintained mitochondrial respiration and ATP production through oxidative phosphorylation. In other words, these metabolic adaptations were able to counteract the cytotoxic effects of fat accumulation on mitochondria and ultimately on hepatocytes. Altogether, MCJ arises as a key regulator of NAFLD paving the way for new promising therapeutic approaches
Hu Antigen R (HuR) Protein Structure, Function and Regulation in Hepatobiliary Tumors
Hepatobiliary tumors are a group of primary malignancies encompassing the liver, the intra- and extra-hepatic biliary tracts, and the gall bladder. Within the liver, hepatocellular carcinoma (HCC) is the most common type of primary cancer, which is, also, representing the third-most recurrent cause of cancer-associated death and the sixth-most prevalent type of tumor worldwide, nowadays. Although less frequent, cholangiocarcinoma (CCA) is, currently, a fatal cancer with limited therapeutic options. Here, we review the regulatory role of Hu antigen R (HuR), a ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), in the pathogenesis, progression, and treatment of HCC and CCA. Overall, HuR is proposed as a valuable diagnostic and prognostic marker, as well as a therapeutic target in hepatobiliary cancers. Therefore, novel therapeutic approaches that can selectively modulate HuR function appear to be highly attractive for the clinical management of these types of tumors.España Ministerio de Ciencia, Innovación y Universidades (MICINN), integrated in the Plan Estatal de Investigación Científica y Técnica e Innovación, grant numbers PID2020-117116RB-I00 (to M.L.M.-C.) and PGC2018-096049-B-I00Gobierno de Andalucía, grant numbers BIO-198, US-1254317, US-1257019, P18-FR-3487, and P18-HO-4091Fondo Europeo de Desarrollo Regional (FEDER) (to MLM-C and I.D.-M.); and the La Caixa Foundation Program, grant number HR17-00601 (to M.L.M.-C.).España Ministerio de Educación, Cultura y Deporte, grant number FPU016/0151
Restoring cellular magnesium balance through Cyclin M4 protects against acetaminophen-induced liver damage
Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.Acknowledgements: This work was supported by Ministerio de Ciencia, Innovación y Universidades MICINN: PID2020-117116RB-I00 integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación, cofinanciado con Fondos FEDER (to MLM-C), Ministerio de Ciencia e Innovación CONSOLIDER-INGENIO 2010 Program Grant CSD2008-00005 (to LAMC); Spanish Ministry of Economy and Competitiveness Grant BFU2013-47531-R, BFU2016-77408-R, PID2019-109055RB-100 (to L.A.M.-C.) (MINECO/FEDER, UE); Asociación Española contra el Cáncer (MLM-C, TC-D), Fundación Científica de la Asociación Española Contra el Cáncer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M.-C.), La Caixa Foundation Program (to M.L.M.-C.), Fundacion BBVA UMBRELLA project (to M.L.M.-C.), Ayuda RYC2020-029316-I financiada por MICIN/AEI/10.13039/501100011033 (to TC-D), Plataforma de Investigación Clínica-SCReN (PT17 0017 0020) (to M.I.-L.), programa retos RTC2019-007125-1 (to M.L.M.-C, J.S.), Proyectos Investigacion en Salud DTS20/00138 (to M.L.M.-C., J.S), ERA-Net E-Rare EJP RD Joint Translational Call for Rare Diseases FIGHT-CNNM2 (EJPRD19-040) and from Instituto Carlos III, Spain (REF G95229142) (to L.A.M.-C.), US National Institutes of Health under grant CA217817 (to D.B.), Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thankMINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644) and PhD fellowship fromMINECO (REF BES-2017-080435) awarded to I.G.-R. The collection and storage of patients tissues was supported by the Newcastle Biomedicine Biobank and the European Community’s Seventh Framework Programme (FP7/2001–2013) and Cancer Research UK awards Cancer Research UK grants C18342/A23390; C9380/A18084 and C9380/A26813. Finally, we would like to acknowledge Begoña Rodríguez Iruretagoyena for the technical support provided
Enhanced mitochondrial activity reshapes a gut microbiota profile that delays NASH progression
[EN] Background and Aims: Recent studies suggest that mitochondrial dysfunction promotes progression to NASH by aggravating the gut-liver status. However, the underlying mechanism remains unclear. Herein, we hypothesized that enhanced mitochondrial activity might reshape a specific microbiota signature that, when transferred to germ-free (GF) mice, could delay NASH progression. Approach and Results: Wild-type and methylation-controlled J protein knockout (MCJ-KO) mice were fed for 6 weeks with either control or a choline-deficient, L-amino acid–defined, high-fat diet (CDA-HFD). One mouse of each group acted as a donor of cecal microbiota to GF mice, who also underwent the CDA-HFD model for 3 weeks. Hepatic injury, intestinal barrier, gut microbiome, and the associated fecal metabolome were then studied. Following 6 weeks of CDA-HFD, the absence of methylation-controlled J protein, an inhibitor of mitochondrial complex I activity, reduced hepatic injury and improved gut-liver axis in an aggressive NASH dietary model. This effect was transferred to GF mice through cecal microbiota transplantation. We suggest that the specific microbiota profile of MCJ-KO, characterized by an increase in the fecal relative abundance of Dorea and Oscillospira genera and a reduction in AF12, Allboaculum, and [Ruminococcus], exerted protective actions through enhancing short-chain fatty acids, nicotinamide adenine dinucleotide (NAD+) metabolism, and sirtuin activity, subsequently increasing fatty acid oxidation in GF mice. Importantly, we identified Dorea genus as one of the main modulators of this microbiota-dependent protective phenotype. Conclusions: Overall, we provide evidence for the relevance of mitochondria–microbiota interplay during NASH and that targeting it could be a valuable therapeutic approach.S
The lipopolysaccharide-TLR4 axis regulates hepatic glutaminase 1 expression promoting liver ammonia build-up as steatotic liver disease progresses to steatohepatitis
Introduction
Ammonia is a pathogenic factor implicated in the progression of metabolic-associated steatotic liver disease (MASLD). The contribution of the glutaminase 1 (GLS) isoform, an enzyme converting glutamine to glutamate and ammonia, to hepatic ammonia build-up and the mechanisms underlying its upregulation in metabolic-associated steatohepatitis (MASH) remain elusive.
Methods
Multiplex transcriptomics and targeted metabolomics analysis of liver biopsies in dietary mouse models representing the whole spectra of MASLD were carried out to characterize the relevance of hepatic GLS during disease pathological progression. In addition, the acute effect of liver-specific GLS inhibition in hepatic ammonia content was evaluated in cultured hepatocytes and in in vivo mouse models of diet-induced MASLD. Finally, the regulatory mechanisms of hepatic GLS overexpression related to the lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) axis were explored in the context of MASH.
Results
In mouse models of diet-induced MASLD, we found that augmented liver GLS expression is closely associated with the build-up of hepatic ammonia as the disease progresses from steatosis to steatohepatitis. Importantly, the acute silencing/pharmacological inhibition of GLS diminishes the ammonia burden in cultured primary mouse hepatocytes undergoing dedifferentiation, in steatotic hepatocytes, and in a mouse model of diet-induced steatohepatitis, irrespective of changes in ureagenesis and gut permeability. Under these conditions, GLS upregulation in the liver correlates positively with the hepatic expression of TLR4 that recognizes LPS. In agreement, the pharmacological inhibition of TLR4 reduces GLS and hepatic ammonia content in LPS-stimulated mouse hepatocytes and hyperammonemia animal models of endotoxemia.
Conclusions
Overall, our results suggest that the LPS/TLR4 axis regulates hepatic GLS expression promoting liver ammonia build-up as steatotic liver disease progresses to steatohepatitis.TC Delgado is funded by “Ayuda RYC2020-029316-I financiada por MCIN/AEI/10.13039/501100011033 y por El FSE invierte en tu future”. This work was supported by the Gilead Sciences Research Scholars Program in Global Liver (to TCD), Nanostring® grant (to TCD); grant from Ministerio de Ciencia, Innovación y Universidades (MICINN: PID2022-139395OB-100 integrado en el Plan Estatal de Investigación Científica y Técnica e Innovación, con Fondos FEDER); grants from Ministerio de Ciencia, Innovación y Universidades MICINN: PID2020-117116RB-I00 CEX2021-001136-S integrado en el Plan Estatal de Investigación Científica y Técnica e Innovación, cofinanciado con Fondos FEDER for (MLM-C); Project funded by CIBEREHD; La Caixa Scientific Foundation (HR17-00601) (for MLM-C); ERA-Net E-Rare EJP RD Joint Translational Call for Rare Diseases FIGHT-CNNM2 (EJPRD19-040), and from Instituto Carlos III, Spain (for MLM-C, JH); the Basque Department of Education (IT1739-22) (for JH). JH and TCD are members of the European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN) Project ID No. 739543
Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen
Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.We thank Ministerio de Ciencia e Innovación, Programa Retos-Colaboración RTC2019-
007125-1 (for J.S. and M.L.M.-C.); Instituto de Salud Carlos III: Proyectos de Investigación en Salud
DTS20/00138 (for J.S. and M.L.M.-C.), PI20/00690 (for R.J.) and PT20/000127 (for M.I.L.); CIBERehd:
EHD21TRF01/2022 (to M.L.M.-C.); Departamento de Industria del Gobierno Vasco (for M.L.M.-C.);
Ministerio de Ciencia, Innovación y Universidades MICINN: PID2020-117116RB-I00 and RTI2018-
096759-1-100 integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación, cofinanciado con Fondos FEDER (for M.L.M.-C. and T.C.D., respectively); BIOEF (Basque Foundation
for Innovation and Health Research); Asociación Española contra el Cáncer (AECC) (to M.L.M.-C.,
T.C.D.); AECC: GCTRA18006CARR (to A.C.); Fundación Científica de la Asociación Española Contra
el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (for M.L.M.); La Caixa Foundation Program (for M.L.M.); BFU2015-70067-REDC, BFU2016-77408-R and BES-2017-080435 (MINECO/FEDER,
UE); Ministerio de Ciencia, Innovación y universidades PID2019-108787RB-100 (to A.C.), PID2019-
109055RB-I00 (L.A.M.-C.), PID2020-117941RB-100 (to F.J.C.); Spanish Ministry of Economy and Competitiveness Grants BFU2013-47531-R and BFU2016-77408-R (L.A.M.-C.) and the FIGHT-CNNM2
project from the EJP RD Joint Transnational Call (JTC2019) (Ref. AC19/00073) (for L.A.M.-C.); Comunidad de Madrid: EXOHEP-CM S2017/BMD-3727 and NanoLiver-CM Y2018/NMT-4949 co-funded
by European Structural and Investment Fund and COST Action CA17112 (to F.J.C.); Vencer el Cáncer
Foundation (to A.C.); European Research Council: Consolidator Grant 819242 (to A.C.); CIBERONC
and CIBERehd were funded by the Instituto de Salud Carlos III and Cofunded by FEDER funds. Partial funding for open access charge: Universidad de Málag
Multi-Omics Integration Highlights the Role of Ubiquitination in CCl4-Induced Liver Fibrosis
Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in chronic liver disease. Ubiquitination is a post-translational modification that is crucial for a plethora of physiological processes. Even though the ubiquitin system has been implicated in several human diseases, the role of ubiquitination in liver fibrosis remains poorly understood. Here, multi-omics approaches were used to address this. Untargeted metabolomics showed that carbon tetrachloride (CCl4)-induced liver fibrosis promotes changes in the hepatic metabolome, specifically in glycerophospholipids and sphingolipids. Gene ontology analysis of public deposited gene array-based data and validation in our mouse model showed that the biological process “protein polyubiquitination” is enriched after CCl4-induced liver fibrosis. Finally, by using transgenic mice expressing biotinylated ubiquitin (bioUb mice), the ubiquitinated proteome was isolated and characterized by mass spectrometry in order to unravel the hepatic ubiquitinated proteome fingerprint in CCl4-induced liver fibrosis. Under these conditions, ubiquitination appears to be involved in the regulation of cell death and survival, cell function, lipid metabolism, and DNA repair. Finally, ubiquitination of proliferating cell nuclear antigen (PCNA) is induced during CCl4-induced liver fibrosis and associated with the DNA damage response (DDR). Overall, hepatic ubiquitome profiling can highlight new therapeutic targets for the clinical management of liver fibrosis.This work was supported by grants from Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C.), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C.), Ministerio de Ciencia, Innovación y Universidades MICINN: SAF2017-87301-R, SAF2017-88041-R, RTI2018-096759-A-100 and SAF2016-76898-P integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación, cofinanciado con Fondos FEDER (to M.L.M.-C., J.M.M., T.C.D. and U.M. respectively); AECC Bizkaia (M.S.-M.); Asociación Española contra el Cáncer (T.C.D.), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M., J.M.B., M.A.A., J.J.G.M.), La Caixa Foundation Program (to M.L.M.), 2018 BBVA Foundation Grants for Scientific Research Teams (to M.L.M.-C.). This research was also funded by the CIBERehd (EHD15PI05/2016) and “Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III”, Spain (PI16/00598 and PI19/00819, co-funded by European Regional Development Fund/European Social Fund, “Investing in your future”); Spanish Ministry of Economy, Industry and Competitiveness (SAF2016-75197-R); “Junta de Castilla y Leon” (SA063P17); AECC Scientific Foundation (2017/2020), Spain; “Centro Internacional sobre el Envejecimiento” (OLD-HEPAMARKER, 0348_CIE_6_E), Spain; University of Salamanca Foundation, Spain (PC-TCUE18-20_051), and Fundació Marato TV3 (Ref. 201916-31), Spain (to J.J.G.M.). The UPV/EHU Lab and the Proteomics Platform are members of Proteored, PRB3 and is supported by grant PT17/0019, of the PE I + D + i 2013-2016, funded by ISCIII and ERDF. Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644)
Restoring cellular magnesium balance through Cyclin M4 protects against acetaminophen-induced liver damage
Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury
Magnesium accumulation upon cyclin M4 silencing activates microsomal triglyceride transfer protein improving NASH
Background & Aims: Perturbations of intracellular magnesium (Mg) homeostasis have implications for cell physiology. The cyclin M family, CNNM, perform key functions in the transport of Mg across cell membranes. Herein, we aimed to elucidate the role of CNNM4 in the development of non-alcoholic steatohepatitis (NASH). Methods: Serum Mg levels and hepatic CNNM4 expression were characterised in clinical samples. Primary hepatocytes were cultured under methionine and choline deprivation. A 0.1% methionine and choline-deficient diet, or a choline-deficient high-fat diet were used to induce NASH in our in vivo rodent models. Cnnm4 was silenced using siRNA, in vitro with DharmaFECT and in vivo with Invivofectamine® or conjugated to N-acetylgalactosamine. Results: Patients with NASH showed hepatic CNNM4 overexpression and dysregulated Mg levels in the serum. Cnnm4 silencing ameliorated hepatic lipid accumulation, inflammation and fibrosis in the rodent NASH models. Mechanistically, CNNM4 knockdown in hepatocytes induced cellular Mg accumulation, reduced endoplasmic reticulum stress, and increased microsomal triglyceride transfer activity, which promoted hepatic lipid clearance by increasing the secretion of VLDLs. Conclusions: CNNM4 is overexpressed in patients with NASH and is responsible for dysregulated Mg transport. Hepatic CNNM4 is a promising therapeutic target for the treatment of NASH. Lay summary: Cyclin M4 (CNNM4) is overexpressed in non-alcoholic steatohepatitis (NASH) and promotes the export of magnesium from the liver. The liver-specific silencing of Cnnm4 ameliorates NASH by reducing endoplasmic reticulum stress and promoting the activity of microsomal triglyceride transfer protein.Ministerio de Ciencia e Innovación, Programa Retos-Colaboración
RTC2019-007125-1 (for JS and MLM-C); Instituto de Salud Carlos
III, Proyectos de Investigación en Salud DTS20/00138 (for JS and
MLM-C); Departamento de Industria del Gobierno Vasco (for
MLM-C); Ministerio de Ciencia, Innovación y Universidades
MICINN: SAF2017-87301-R and RTI2018-096759-A-100 integrado
en el Plan Estatal de Investigación Cientifica y Técnica y
Innovación, cofinanciado con Fondos FEDER (for MLM-C and
TCD, respectively); BIOEF (Basque Foundation for Innovation and
Health Research); EITB Maratoia BIO15/CA/014; Asociación
Española contra el Cáncer (MLM-C, TCD); Fundación Científica de
la Asociación Española Contra el Cancer (AECC Scientific Foundation)
Rare Tumor Calls 2017 (for MLM); La Caixa Foundation
Program (for MLM); Fundacion BBVA UMBRELLA project (for
MLM); BFU2015-70067-REDC, BFU2016-77408-R, and BES-2017-
080435 (MINECO / FEDER, UE) and the FIGHT-CNNM2 project
from the EJP RD Joint Transnational Call (JTC2019) (Ref. AC19/
00073) (for LAM-C); RTI2018-095134-B-100 and Grupos de
Investigación del Sistema Universitario Vasco (IT971-16) (for PA);
National Institutes of Health under grant CA217817 (for DB);
AGL2014-54585-R, AGL-2017-86927-R and EQC2018-004897-P
from MINECO; PC0148-2016-0149 and PAI-BIO311 from Junta
de Andalucía (for FM). Ciberehd_ISCIII_MINECO is funded by the
Instituto de Salud Carlos III. We thank Silence Therapeutics plc.
for the financial support provided. We thank MINECO for the
Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-
2016-0644)