700 research outputs found

    Rediscovery and reclassification of the dipteran taxon Nothomicrodon Wheeler, an exclusive endoparasitoid of gyne ant larvae

    Get PDF
    The myrmecophile larva of the dipteran taxon Nothomicrodon Wheeler is rediscovered, almost a century after its original description and unique report. The systematic position of this dipteran has remained enigmatic due to the absence of reared imagos to confirm indentity. We also failed to rear imagos, but we scrutinized entire nests of the Brazilian arboreal dolichoderine ant Azteca chartifex which, combined with morphological and molecular studies, enabled us to establish beyond doubt that Nothomicrodon belongs to the Phoridae (Insecta: Diptera), not the Syrphidae where it was first placed, and that the species we studied is an endoparasitoid of the larvae of A. chartifex, exclusively attacking sexual female (gyne) larvae. Northomicrodon parasitism can exert high fitness costs to a host colony. Our discovery adds one more case to the growing number of phorid taxa known to parasitize ant larvae and suggests that many others remain to be discovered. Our findings and literature review confirm that the Phoridae is the only taxon known that parasitizes both adults and the immature stages of different castes of ants, thus threatening ants on all fronts.Peer reviewe

    Mesothelial cells: A cellular surrogate for tissue engineering of corneal endothelium

    Get PDF
    [Purpose]: To evaluate whether mouse adipose tissue mesothelial cells (ATMCs) share morphologic and biochemical characteristics with mouse corneal endothelial cells (CECs) and to evaluate their capacity to adhere to the decellularized basal membrane of human anterior lens capsules (HALCs) as a potential tissue-engineered surrogate for corneal endothelium replacement. [Methods]: Adipose tissue mesothelial cells were isolated from the visceral adipose tissue of adult mice, and their expression of several corneal endothelium markers was determined with quantitative RT-PCR, immunofluorescence, and Western blotting. Adipose tissue mesothelial cells were cultured in a mesothelial retaining phenotype medium (MRPM) and further seeded and cultured on top of the decellularized basal membrane of HALCs. ATMC-HALC composites were evaluated by optical microscopy, immunofluorescence, and transmission electron microscopy. [Results]: Mesothelial retaining phenotype medium-cultured ATMCs express the corneal endothelium markers COL4A2, COL8A2, SLC4A4, CAR2, sodium- and potassium-dependent adenosine triphosphatase (Na+/K+-ATPase), b-catenin, zona occludens-1, and N-cadherin in a pattern similar to that in mouse CECs. Furthermore, ATMCs displayed strong adhesion capacity onto the basal membrane of HALCs and formed a confluent monolayer within 72 hours of culture in MRPM. Ultrastructural morphologic and marker characteristics displayed by ATMC monolayer on HALCs clearly indicated that ATMCs retained their original phenotype of squamous epithelial-like cells. [Conclusions]: Corneal epithelial cells and ATMCs share morphologic (structural) and marker (functional) similarities. The ATMCs adhered and formed structures mimicking focal adhesion complexes with the HALC basal membrane. Monolayer structure and achieved density of ATMCs support the proposal to use adult human mesothelial cells (MCs) as a possible surrogate for damaged corneal endothelium.Supported by Fondos FEDER, Fundación Progreso y Salud, Consejería de Salud, Junta de Andalucía (Grant PI-0022/2008), INNPACTO Program (INP-2011-1615-900000), and SUDOE Program-BIOREG (Intereg SOE3/P1/E750); Consejer´ıa de Innovación Ciencia y Empresa, Junta de Andalucía (Grant CTS-6505); Ministry of Science and Innovation (Red TerCel-FEDER Grant RD12/0019/ 0028); Instituto de Salud Carlos III Grant PI10/00964); the Ministry of Health and Consumer Affairs Advanced Therapies Program Grant TRA-120 (BS); and Corporación Tecnológica de Andalucía CTA (NBT). CIBERDEM is an initiative of the Instituto de Salud Carlos III.Peer Reviewe

    The SVOM gamma-ray burst mission

    Full text link
    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the next decade will benefit from a number of large facilities in all wavelengths that will contribute to increase the scientific return of the mission. Finally, SVOM will operate in the era of the next generation of gravitational wave detectors, greatly contributing to searches for the electromagnetic counterparts of gravitational wave triggers at Xray and gamma-ray energies.Comment: 13 pages, 5 figures, published by PoS, proceedings of the conference Swift: 10 Years of Discovery, 2-5 December 2014, La Sapienza University, Rome, Ital
    corecore