309 research outputs found

    Phase transition in the Countdown problem

    Get PDF
    Here we present a combinatorial decision problem, inspired by the celebrated quiz show called the countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We then derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.Comment: Submitted for publicatio

    Time series irreversibility: a visibility graph approach

    Get PDF
    We propose a method to measure real-valued time series irreversibility which combines two differ- ent tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the in and out degree distributions of the associated graph. The method is computationally effi- cient, does not require any ad hoc symbolization process, and naturally takes into account multiple scales. We find that the method correctly distinguishes between reversible and irreversible station- ary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic pro- cesses (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identifiy the irreversible nature of the series.Comment: submitted for publicatio

    Arrow of time across five centuries of classical music

    Get PDF
    The concept of time series irreversibility—the degree by which the statistics of signals are not invariant under time reversal—naturally appears in nonequilibrium physics in stationary systems which operate away from equilibrium and produce entropy. This concept has not been explored to date in the realm of musical scores as these are typically short sequences whose time reversibility estimation could suffer from strong finite size effects which preclude interpretability. Here we show that the so-called horizontal visibility graph method—which recently was shown to quantify such statistical property even in nonstationary signals—is a method that can estimate time reversibility of short symbolic sequences, thus unlocking the possibility of exploring such properties in the context of musical compositions. Accordingly, we analyze over 8000 musical pieces ranging from the Renaissance to the early Modern period and show that, indeed, most of them display clear signatures of time irreversibility. Since by construction stochastic processes with a linear correlation structure (such as 1 / f noise) are time reversible, we conclude that musical compositions have a considerably richer structure, that goes beyond the traditional properties retrieved by the power spectrum or similar approaches. We also show that musical compositions display strong signs of nonlinear correlations, that nonlinearity is correlated to irreversibility, and that these are also related to asymmetries in the abundance of musical intervals, which we associate to the narrative underpinning a musical composition. These findings provide tools for the study of musical periods and composers, as well as criteria related to music appreciation and cognition

    Feigenbaum graphs: a complex network perspective of chaos

    Get PDF
    The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map nonlinearity or other particulars. We derive exact results for their degree distribution and related quantities, recast them in the context of the renormalization group and find that its fixed points coincide with those of network entropy optimization. Furthermore, we show that the network entropy mimics the Lyapunov exponent of the map independently of its sign, hinting at a Pesin-like relation equally valid out of chaos.Comment: Published in PLoS ONE (Sep 2011

    Monensin and forskolin inhibit the transcription rate of sucrase-isomaltase but not the stability of its mRNA in Caco-2 cells

    Get PDF
    AbstractTreatment of Caco-2 cells with forskolin (25 ÎĽM) or monensin (1 ÎĽM) has previously been shown to cause a marked decrease in the level of sucrase-isomaltase (SI) mRNA, without any effect on the expression of dipeptidylpeptidase IV (DPP-IV). In the present work, we report that there is no significant difference in the stability of SI mRNA between control and treated cells. On the other hand, we demonstrate a decrease in the transcription rate of SI mRNA which is sufficient to account for the decrease in the steady-state level of SI mRNA both in forskolin- and monensin-treated Caco-2 cells

    Phase transitions in number theory: from the birthday problem to Sidon sets

    Get PDF
    In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discusse

    Informe sobre la enseñanza secundaria agrícola en Inglaterra y Gales

    Get PDF
    The author tries to give a whole idea of the organization and character of the agricultural secondary teaching in England and Wales, its principal direction being contained in the rapport drawn by the Loveday Commision in 1945. It is to be noted the English trend to suppress the exclusively technical or professiontal secondary schools in a strict sense. The agricultural secondary teaching tries to prepare those wo will later on occupy positions of responsibility in the agricultural industry so that they may be clever, useful members in the rural community. In the first place the Loveday Commision studied the adaptation of a plan of agricultural studies to the existing schools: Secondary Grammar School, Secondary Technical School and Secondary Modern School and in second place the creation of two types of agricultural technical secondary Schools: Agricultural Technical School and Rural Junior Polytechnic

    Description of stochastic and chaotic series using visibility graphs

    Full text link
    Nonlinear time series analysis is an active field of research that studies the structure of complex signals in order to derive information of the process that generated those series, for understanding, modeling and forecasting purposes. In the last years, some methods mapping time series to network representations have been proposed. The purpose is to investigate on the properties of the series through graph theoretical tools recently developed in the core of the celebrated complex network theory. Among some other methods, the so-called visibility algorithm has received much attention, since it has been shown that series correlations are captured by the algorithm and translated in the associated graph, opening the possibility of building fruitful connections between time series analysis, nonlinear dynamics, and graph theory. Here we use the horizontal visibility algorithm to characterize and distinguish between correlated stochastic, uncorrelated and chaotic processes. We show that in every case the series maps into a graph with exponential degree distribution P (k) ~ exp(-{\lambda}k), where the value of {\lambda} characterizes the specific process. The frontier between chaotic and correlated stochastic processes, {\lambda} = ln(3/2), can be calculated exactly, and some other analytical developments confirm the results provided by extensive numerical simulations and (short) experimental time series

    Sequential motif profile of natural visibility graphs

    Get PDF
    6 figures captioned6 figures captione
    • …
    corecore