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The concept of time series irreversibility –the degree by which the statistics of signals are not
invariant under time reversal– naturally appears in non-equilibrium physics in stationary systems
which operate away from equilibrium and produce entropy. This concept has not been explored to
date in the realm of musical scores as these are typically short sequences whose time reversibility
estimation could suffer from strong finite size effects which preclude interpretability. Here we show
that the so-called Horizontal Visibility Graph method –which recently was shown to quantify such
statistical property even in non-stationary signals– is a method that can estimate time reversibil-
ity of short symbolic sequences, thus unlocking the possibility of exploring such properties in the
context of musical compositions. Accordingly, we analyse over 8000 musical pieces ranging from
the Renaissance to the early Modern period and certify that, indeed, most of them display clear
signatures of time irreversibility. Since by construction stochastic processes with a linear correlation
structure (such as 1/f noise) are time reversible, we conclude that musical compositions have a
considerably richer structure, that goes beyond the traditional properties retrieved by the power
spectrum or similar approaches. We also show that musical compositions display strong signs of
nonlinear correlations, that nonlinearity is correlated to irreversibility, and that these are also re-
lated to asymmetries in the abundance of musical intervals, which we associate to the narrative
underpinning a musical composition. These findings provide tools for the study of musical periods
and composers, as well as criteria related to music appreciation and cognition.

I. INTRODUCTION

The quantitative description of the structure in musical compositions has a long history of interdisciplinary re-
search, with contributions from musical theory, information theory, mathematics to physics. Traditional quantitative
analysis of the temporal structure underlying musical pieces have mainly addressed linear correlations, such as
the ones captured by spectral (Fourier) analysis, starting from the pioneering work of Voss and Clarke [1, 2] and
subsequently followed by a wealth of more in-depth analysis [3–13]. It is nowadays widely accepted that music
presents a so-called 1/f power spectrum and that this is a fingerprint of “appealing sound” [14–19]. However, recent
evidence has challenged this vision, as it has been suggested that pleasantness could be also related to nonlinearities
present in music compositions, a property which by definition is not captured in the power spectra [20]. These
findings motivate further exploration into quantitative ways of measuring structure in music compositions that goes
beyond linear theories. Amongst others, musicians and musicologists have addressed the breakdown of continuity
and temporality [44], the effect of asymmetry in melody [49] and the importance of musical irreversibility [47]. In all
cases, a relationship with pleasantness has been explored.

Inspired by both statistical physics and nonlinear dynamical concepts, here we introduce statistical measures for
irreversibility, nonlinearity and asymmetry and present a description of music scores by gauging their interrelations.
We primarily explore to which extent classical music manifests statistical time irreversibility and further on introduce
nonlinearity and asymmetry. Simply put, a stationary signal is (statistically) time reversible if the statistical
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properties of the signal are invariant under time reversal [24], whereas the signal is statistically irreversible in the
opposite case. For instance, white noise is a stochastic process known to be statistically reversible: if one listens to
temporal white noise and subsequently to the same signal after time reversal, it is not possible to distinguish not
only which is which, but also whether they sound different.
The notion of statistical time irreversibility, which has been associated with an “arrow of time”, has deep relations
in non-equilibrium physics with concepts such as dissipation and entropy production. For instance, the amount of
entropy produced by a thermodynamic system out of equilibrium has been linked, in non-equilibrium steady states
(NESS), to the extent in this system displays time irreversibility [21–23]. Interestingly, it is well known that a large
family of stochastic processes –which include pink or 1/f noise as a special case– are statistically reversible [25].
The presence or absence of statistical reversibility is a priori a well-suited concept to explore to which extent the
regularities and patterns present in musical compositions go beyond linear correlation structures.
Standard methods that estimate irreversibility in (discrete) stationary signals usually require long time series sizes
for an accurate estimation when the alphabet (number of different states) is large, simply because the amount of
possible m-grams scales exponentially with the alphabet size. This is a problem expected to emerge in musical
compositions, as these are seldom large, typically consisting of sequences of some hundreds of notes, and the alphabet
size (e.g. the number of different notes involved in the piece) is rarely exponentially small. Here we leverage on a
recently introduced approach, horizontal visibility graph irreversibility (HVG-I) [32, 33], which we argue actually
bridges this gap and is able to extract meaningful measures of statistical irreversibility in short sequences and
applies to both stationary and non-stationary signals. We extend the method to deal with short sequences by
defining a measure of HVG-irreversibility –which we can link to entropy production– and a confidence index which
states when a certain irreversibility value is genuine or, on the contrary, is just a finite size effect and therefore
spurious. Equipped with these tools, we can then explore time series irreversibility in music. Interestingly, we
find that a large amount of compositions indeed display time irreversibility and therefore can be understood as
signals generated by systems which operate out of equilibrium and producing entropy. We explore in detail the
relation between irreversibility, entropy production and the presence of nonlinear temporal correlations in music,
establishing that irreversibility is a key feature of musical compositions which is not related to linear information
displayed by the power spectrum, and we are finally able to interpret such fingerprints in terms of musical composition.

The rest of the paper is as follows: in section II we present the database, which consists of over 8000 musical composi-
tions from 77 different composers spanning several centuries and different musical periods, from the Renaissance to the
beginning of the Modern Period. In section III we present the theory and methods used to estimate time irreversibility
and entropy production in music. In section IV we present the results from these methods and complement them with
additional characterisation provided for nonlinearity and interval asymmetry. The former attempts to quantify the
temporal correlation structure which persists in musical compositions once linear temporal correlations are removed,
whereas the latter is a strongly musical-based notion. We provide a global picture by comparing the performance and
relations between irreversibility, nonlinearity and interval asymmetry, and in section V we conclude.

II. DATASET

We collected 8856 midi files of 77 different composers extracted from the Kunst der fugue midi dataset [36]. Since
each piece usually incorporates different voices (different time series, each one corresponding to a different voice), a
first task was to decide which of these voices should be considered as the main voice or pitch sequence of the piece
(note that the full, multivariate analysis could be done as well, and we leave that approach for a future work). To
choose the pitch sequence in multi-voice pieces, we used the following two-step criterion: 1) the pitch sequence must
be longer than 30 notes and 2) the sequence should have the largest number of different notes from all sequences in
the same piece. With this criterion we are assuming that the selected pitch sequence would have most of the relevant
features in the musical piece (such as the melody or the theme with its variations). We checked that applying the
criterion above was unambigious, and only one sequence could be extracted from each piece. We processed each midi
file by parsing it into a comma separated value (CSV) [37] format and with the aid of a Julia script [48] we extracted
the pitch sequence (see left panel of Fig.1 for an illustration). Some examples of pitch sequences extracted from
individual pieces are depicted for illustration in the right panel of Figure 1.

To have a rough idea of the characteristics of these sequences, in the right panel of Figure 2 we display the sequence
size histogram, whereas in the left panel of the same figure we depict the distribution of the number of different notes
(i.e. the alphabet) per piece. As expected, typically the alphabet is too large (in principle there are 128 symbols,
and in practice the average alphabet size is 30) and the sequence size too short (median 427) for standard time
irreversibility methods –such as comparing the frequency of n-grams in the forward and backward sequence– to be
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Figure 1: Data extraction protocol. (Left panel) Scheme for the process of extracting one pitch sequence from each MIDI
file. (Right panel) Samples of pieces from different authors (note that the y-axis has been shifted for illustration purposes).

Figure 2: Alphabet and sequence size. (Left panel) Histogram of the alphabet (number of different notes) for all the
pieces analysed (median = 30 and kurtosis = 0.6). (Right panel) Semi-log histogram describing the amount of pieces that have
a certain size N (in number of notes). The majority of pieces have less than 103 time steps (median= 456, kurtosis= 23). The
smallest piece has N = 35 data points, whereas the largest has N = 15795 data points.

applicable, hence motivating the use of graph-theoretic approaches such as the one described in the next section.

III. TIME IRREVERSIBILITY

A. Reversibility and entropy production in stationary systems

A stationary process is said to be time reversible if the joint probability distribution of the forward and backward
process are statistically equivalent. More concretely, let S = (x1, x2, . . . , xN ) be a time series of N data, and
denote S ∗ = (xN , xN−1, . . . , x1) the backward time series. The forward and backwards joint distributions are
denoted respectively PF (N) := P (x1, x2, . . . , xN ), PB(N) := P (xN , xN−1, . . . , x1). We say that the time series S

is statistically time reversible if and only if PF (m)
d
=PB(m),∀m = 1, . . . , N , where

d
= should be interpreted here as

having two distributions which cannot be distinguished. Accordingly, statistical time reversibility is usually known
as the property of a time series whose statistics remain the same when the series is flipped. Note that in practice
PF (m � 1) are hard to estimate, and in the event that only a single realisation S is available, PF (N) cannot be
estimated at all. In those cases it is customary to estimate PF (m) and PB(m) for 2 ≤ m � N , since a sufficient
condition for rejecting time reversibility is to reject indistinguishability for small m.
Gaussian linear processes such as white noise or colored noise, or conservative chaotic processes such as Hamiltonian
chaos are statistically time reversible, and related to processes in thermodynamic equilibrium in statistical physics.
Nonlinear stochastic processes, or dissipative chaotic processes on the other hand are generally found to be irreversible
[25], and are associated to processes that operate away from equilibrium in a thermodynamic sense.
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There are various possible approaches to quantify the degree of irreversibility, starting from the obvious choice of
comparing the m-gram statistics in S and S ∗, to more exotic approaches [25, 26, 32]. A notable result dictates
that when the signal x(t) = xt is generated by an underlying thermodynamic system, then the amount of time
irreversibility of an (infinitely long, i.e. N →∞) trajectory S is related to the amount of entropy that the underlying
thermodynamic system is producing [22]. In particular, in the event that all active (i.e. out of equilibrium) degrees
of freedom are characterised in the phase-space variable x, then the steady-state rate of entropy production σtot is
related to the time irreversibility of S via

σtot = kB lim
m→∞

1

m
KLD(PF (m)||PB(m)), (1)

where kB is the Boltzmann constant and KLD(·||·) is the Kullback-Leibler divergence. Note that for any distributions
Q and R, KLD(Q||R) defined by:

KLD(Q||R) =
∑
x

Q(x) log[Q(x)/R(x)],

quantifies their distinguishability since KLD(Q||R) = 0 if and only if Q and R are identical, and is positive otherwise.
Note also that when the observable x does not fully incorporate all active degrees of freedom, the right hand side in
Eq.1 is only a lower bound of the true entropy production rate. Moreover, in practice one usually cannot estimate
the full hierarchy of m-grams, so any partial result (m < ∞) again provides a lower bound to σtot. Also, when
x is defined on a continuous support, it is customary to symbolize it. In the case when x is intrinsically discrete
xi ∈ V = {v1, . . . , v|V |} then a proper estimate of the rhs in Eq.1 can only be attained when the sequence size
N � |V | (exponentially larger): this is needed for collecting sufficient statistics on each m-gram. As we will show
below, this latter observation is crucial in our context, as the musical compositions we consider here are relatively
short symbolic sequences (N ranges from a few hundreds to a few thousand points), while the number of symbols
(notes) present in each musical piece is typically of the same order of magnitude as N , thus making the direct empirical
estimation of eq.1 ineffective.
In what follows we introduce an alternative, graph-theoretic method [32] which we show circumvents these issues.

B. HVG-irreversibility

A time series of N points can be transformed into a so-called horizontal visibility graph (HVG) of N nodes via the
so-called horizontal visibility algorithm [27, 28]. This is a non-parametric method that enables the characterisation
of time series and their underlying dynamics using combinatorics and graph theory.

Definition III.1 Let S = {x1, . . . , xN}, xi ∈ R be a real-valued scalar sequence of N data. Its horizontal visibility
graph HVG(S ) is defined as an undirected graph of N vertices, where each vertex i ∈ {1, 2, . . . , N} is labelled in
correspondence with the ordered datum xi. Hence x1 is related to vertex i = 1, x2 to vertex i = 2, and so on. Then,
two vertices i, j (assume i < j without loss of generality) share an edge if and only if xk < inf(xi, xj), ∀k : i < k < j.

HVG implements an ordering criterion which can be visualized in Figure 3 (see [27] for a convexity criterion that
generates ‘natural’ visibility graphs instead). Visibility and Horizontal Visibility graphs were introduced in the
context of time series analysis with the aims of using the tools of Graph Theory and Network Science [29] to describe
the structure of time series and their underlying dynamics from a combinatorial perspective (for other proposals for
graph-theoretical time series analysis, see [30, 31]).

Among others, the concept of time series irreversibility has been recently explored within the context of visibility
graphs [32–34]. In a nutshell, if the HVGs of S and S ∗ have the same properties, then S is said to be HVG-
reversible, and the concept has been shown to be applicable both in stationary and non-stationary processes [33].
How is HVG-reversibility checked in practice? Since each node i = 1, . . . , N in the HVG is associated to a datum
xi, i = 1, . . . , N in the graph, there is a natural node ordering associated to the arrow of time. Such ordering is
therefore inherited by the degree sequence, which has a natural representation k = (k1, . . . , kN ), where ki is the
degree of node i (i.e., the number of links adjacent to node i). Now, while the HVG is initially an undirected
graph, it can be converted into a directed one by assigning a direction to each link in the HVG such that if i < j,
then the link is i → j. Assigning a direction to each of the links splits the degree sequence k = kin + kout, where
kin = (kin1 , k

in
2 , . . . , k

in
N ) is the in-degree sequence and kini counts the number of links which are incident to node

i, and respectively kout = (kout1 , kout2 , . . . , koutN ) where kouti counts the number of links that emanate from node i.
Importantly, by construction one then has that the in-degree sequence of the HVG extracted from a given sequence
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Figure 3: Sample time series of N = 6 data and its associated Horizontal Visibility Graph (HVG) (see [32] for details). By
assigning a temporal arrow to each of the links, the degree sequence splits into an in degree and an out degree sequence, such
that flipping the time series (time reversal operation) is equivalent to interchanging the in and out degree sequences. Assessing
time reversibility in the time series reduces in this context to spot differences in the statistics of the in and out degree sequences,
such as comparing the in and out degree distributions.

is equal to the out-degree sequence of the HVG extracted from the time-reversed sequence, and therefore in order to
assess time reversibility in S , one can simply explore the statistical differences between the in-degree sequence and
the out-degree sequence in the HVG (see [32, 33] for details and Fig. 3 for an illustration).

In [32] some of us proposed that the right hand side Eq.1 could actually be approximated by comparing the in and
out degree distributions of HVG(S ), as these are the (m = 1)-point marginal distribution of the in and out degree
sequences. Note that only needing to look at m = 1 statistics is a substantial difference with respect to the benchmark
method based on comparing m-gram statistics of the time series, as in this latter case by construction the statistics of
1-grams are invariant under time reversal, and irreversibility can only be checked for m = 2 or higher. This resulting
reduction will enhance our ability to effectively use the method in short sequences, as we will show below.
Whereas originally the HVG method only looked at strings of size m = 1 (1-grams) in the degree sequence, one
could of course further generalise this measure if it were needed to account for blocks of arbitrary size in the degree
sequence, following the spirit of Eq.1. For a block size m, let us consider strings of size m within the in and out degree
sequences such that with a little abuse of notation, kmin = (kin1 , k

in
2 , . . . , k

in
m) and similarly for kmout. Additionally, let

P in
m (k) the marginal distribution of the in-degree sequence blocks kmin (respectively for P out

m (k)). Then, we now define
the HVG-irreversibility of order m as the Kullback-Leibler divergence between the in and out degree sequence blocks
marginals

KLDm(in||out) =
∑
k

P in
m (k) log

P in
m (k)

P out
m (k)

, (2)

This quantity is null if and only if the size-m blocks are equally distributed in the (infinitely long) degree sequence,
and is positive otherwise.
To summarise, the procedure to evaluate HVG-reversibility in a time series S is as follows:

• From S we construct the directed HVG, and subsequently extract the in and out degree sequences kin and
kout. Note that for S ∗, kin and kout are interchanged. This procedure is applicable when S comes from both
stationary and non-stationary processes alike.

• To quantify for HVG-reversibility (and HVG-entropy production), we make use of Eq. 2. Note that m = 1 is
the smallest nontrivial case here, as 1-grams of the degree sequence already incorporate temporal directionality
(when using m-grams of S vs S ∗, m = 2 is the simplest nontrivial case instead).

C. On the number of symbols

Once we have outlined the procedure to estimate the HVG-irreversibility, we now consider the problem of working
with short experimental sequences. First, it is important to note that the in and out degrees typically take values
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Figure 4: (Left panel) Log-log plot of the minimum number of effective symbols needed to determine time irreversibility of a
given musical composition, as a function of the size N of the composition, using our HVG-based method (red plus) and using
a standard 2-gram comparison in the note sequence (black crosses). We can see that the number of symbols in the method
based on the note sequence is systematically in the same order of magnitude of total size of the sequence, hence finite size
effects are too strong and make the method unapplicable. The method based on the HVG requires a substantially smaller
number of symbols, orders of magnitude smaller than the sequence size, hence making this method useful in this dataset.
(Right panel) Histogram of the reduction factor ρ (see the text) which compares the effective number of symbols needed in
the HVG irreversibility method with respect to a standard method based on n-gram statistics. When we average over all the
musical pieces, the average number of symbols is reduced 17 times, and this reduction can reach up to 75 times in some cases.
This strongly reduces the finite size effects and hence makes the HVG method useful to explore time irreversibility in short
sequences.

from a small alphabet –systematically smaller than the original musical note alphabet as we will show below–, whose
size increase at most logarithmically with N . This is because the probability that an arbitrary node in a HVG has a
certain in and out degree k typically decays exponentially fast with k [35]. Moreoever, it is important to recall that
temporal irreversibility can already be assessed for m = 1, that is, by only looking at the marginal distribution of the
in and out degree sequences. Conversely, if we were to estimate time irreversibility directly on the note sequences,
then we would at least need to consider strings of size m = 2 consecutive notes. The effective number of symbols
needed is therefore much larger than in our HVG setting. In the left panel of figure 4 we plot the effective number
of symbols required to assess time irreversibility using HVG (red plus sign) and using a simple 2-gram comparison
of the forward and backward note sequence (black crosses). We see that in most of the cases, the number of note
2-grams is of the same order of magnitude than the size of the note sequence, hence making the standard approach
useless. On the other hand, the approach based on HVG keeps the number of symbols needed to a bare minimum
and is therefore useful in this context.
To give an additional quantitative idea of the symbol reduction given by the HVG method, let us define a reduction
factor ρ associated to a given musical piece as

ρ =
total number of strings of size m = 2 empirically found in the MIDI note sequence

total number of different (in our out) degrees empirically found in the in and out degree sequence
.

In figure 4 we plot the histogram P (ρ) estimated over our whole dataset. The average reduction is about 17, which
means that our irreversibility method yields on average a 1700% reduction over the standard method based on
counting the statistics directly on the note sequence. This implies that the finite size effects (subsampling) –which
will appear due to the fact that the musical composition are not exponentially larger than the number of symbols–
will be contained in the case of the HVG method, thus enabling its use in applications where time series are short,
such as in musical compositions.

Having said that, while small, finite size effects are still expected to emerge in finite time series, and because of
that, the Kullback-Leibler divergence will always be positive (vanishing for reversible processes only asymptotically),
which poses some interpretability problems. In what follows we introduce a confidence index whose aim is to solve
this interpretability issue.
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D. Irreversibility ratio IRm: a confidence index

Let us define the m-order Irreversibility Ratio IRm by standardizing the net irreversibility measure KLDm(in||out)
with respect to a null model where the original sequences are shuffled:

IRm =
KLDm(in||out)− 〈KLDm(in||out)〉null model

σ[KLDm(in||out)]null model
(3)

where σ is the standard deviation.
The process of standardizing is applied in order to be able to compare results across samples (musical pieces) with
different sizes and marginal distributions, something which is recurrent in the musical compositions we analyse. More
concretely, in the ideal situation of estimating irreversibility for infinitely long sequences, KLDm(in||out) vanishes if
and only if P in

m (k) = P out
m (k), and therefore values different from zero would indicate that the sequence is statistically

HVG-irreversible. However, in practice this is not so clear cut: the quantity KLDm(in||out) for a reversible process is
only asymptotically null (vanishing as the sample size goes to infinity), and will be finite (yet small) for finite samples
due to statistical deviations in the estimation of joint probability functions P (kin) and P (kout). By standardizing this
quantity with respect to a suitable null model, one can quantify the effective deviation of a given finite sample from
the expected value if that finite sample was generated by a truly reversible process. The null model is built by taking
200 randomizations of the sample sequence, and computing KLDm(in||out) on each randomized sample. Then Eq.3
measures the effective distance of a sample to its null model, in standard deviation (aka ‘sigma’) units. For instance,
if IRm ≤ 1 this means that the irreversibility value of a sample finite sequence is not statistically distinguishable from
a finite sample of the same size and marginal distribution extracted from a truly reversible process. That does not
necessarily mean that the process is HVG-reversible, it only means that there is no statistical significance to assert
otherwise. Similarly, if e.g. IRm = 2, this means that the HVG-irreversibility value of the sample is two standard
deviations larger than the one expected for its (reversible) null model.

Figure 5: Irreversibility ratios IR1 for three theoretically HVG-reversible processes (uniform white noise, unbiased random walk,
pink noise) and one theoretically HVG-irreversible process (fully chaotic logistic map xn+1 = 4xn(1 − xn)). In every case we
generate a time series of N = 104 data points and symbolize with a vocabulary of |V | = 100 symbols. Red crosses correspond
to the empirical irreversibility value of order 1 of the time series KLD1(in||out), black dots correspond to the ensemble average
irreversibility value 〈KLD1(in||out)〉null model of 103 null models constructed by randomizing the empirical time series (see the
text), and the brackets correspond to ± one standard deviation (note that the Y axis is in logarithmic scales). The irreversibility
ratio of order 1 (see the text) decides whether the empirical time series is reversible (IR1 ≤ 1) or irreversible (IR1 > 1), and
correctly predicts the true nature of the process. Interestingly, the empirical irreversibility value KLD1(in||out) of pink noise is
notably larger than for white noise or random walk, which could mislead to the suggestion that pink noise is irreversible. The
irreversibility ratio asserts that this is not the case, suggesting that the difference in the raw values is due to differences in the
specific marginal distribution of the underlying processes, which only yield spurious effects on the determination of temporal
irreversibility.

For illustration and validation, in Figure 5 we plot the raw HVG-irreversibility value KLD1(in||out) (red crosses) and
IR1 for time series extracted from four synthetic dynamical processes: (i) white noise, (ii) random walk, (iii) pink
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noise and (iv) a fully chaotic process.
Process (i) is an (uncorrelated) uniform white noise. This is a stationary stochastic process with delta-like autocor-
relation function, it is statistically reversible and HVG-reversible. The method correctly identifies this character as
IR1 < 1 in this case.
Process (ii) is an unbiased discrete random walk x(t + 1) = x(t) + η, where η ∼ uniform(−1/2, 1/2). Interestingly,
while this is a non-stationary process and thus could be seen as irreversible, it can be shown to be so-called
HVG-stationary [33] and explored adequately within the HVG framework, as HVG-reversible with IR1 < 1. This is
indeed convenient as Brownian particles do not produce entropy on average, so in the context of HVG-reversibility,
we recover the relation between reversibility and entropy production in this non-stationary process.
Process (iii) is a linearly correlated noise with a 1/f spectrum. This is again, by definition, a time reversible process,
and is a paradigmatic (stationary) stochastic process to describe music from the pioneering works of Voss and Clarke
[1, 2]. Also in this case we correctly detect the reversible character as IR1 < 1.
Finally, process (iv) is a deterministic chaotic process generated by a fully chaotic logistic map xt+1 = 4xt(1 − xt).
This process is dissipative and statistically time irreversible (and HVG-irreversible), as certified by IR1 > 1.

Another important aspect is to understand how IRm is affected by the time series length N . Intuitively, if the
underlying process is HVG-reversible, then KLD1(in||out) should be similar to its null model (within its uncertainty)
and both measures should be decaying with the same trend as N increases, and therefore one should expect IRm < 1,
independently of N . If, on the other hand, the underlying process is HVG-irreversible, then KLD1(in||out) should
be systematically larger than zero and remain positive as we increase N . Since the null model of this process is
HVG-reversible, its irreversibility value should decrease as N is increased, we thus expect IRm effectively to increase
with N without bounds. This only means that for an HVG-irreversible process, whereas for short time series the
distinguishability is small (IRm close to 1), as we increase the series size it is systematically easier to ascertain that
the series (and process) is HVG-irreversible. In some sense, IRm is therefore a measure of confidence.
We illustrate this dependence on series size in Fig 6, where in panels (a,b) we consider a truly reversible process
(white noise xt = η, η ∼ Uniform(0, 1)) and in panels (c,d) we consider a truly irreversible process (a fully chaotic
logistic map xt+1 = 4xt(1− xt)). Results indeed confirm our discussion above.

Once we have illustrated how the irreversibility ratio works, let us introduce a classification of net HVG-irreversibility
for a given musical piece as it follows:

Definition III.2 A musical piece is defined as HVG-reversible (or simply reversible) if IR1 ≤ 1. If 1 < IR1 ≤ 4 we
say that the process is HVG-irreversible with weak confidence. If 4 < IR1 ≤ 10, we say that it is HVG-irreversible
with strong confidence, and if IR1 > 10 we say that the musical piece is HVG-irreversible with extreme confidence.

A similar classification can be defined for higher orders m > 1, however this is not needed for this work since IR1

shows strong correlation with IRm>1 for most of the musical pieces considered, hence it will be enough to concentrate
our analysis on m = 1. Incidentally, note that since blocks are extracted from the HVG’s degree sequence (not
directly from the sequence of notes), in principle the HVG-irreversibility measure at m = 1 already gathers temporal
information of different time scales.

Summing up, we have shown that the concept of HVG-reversibility is better suited than the standard concept of
statistical time reversibility to investigate the arrow of time in stationary and nonstationary processes [33], and HVG
is a useful approach when time series are short. We can safely conclude that IRm is a measure that quantifies our
certainty that the time series under study was generated by an HVG-irreversible process. To compute such confidence,
the size of the series (and the resulting finite-size effects) and the specific shape of the marginal distribution of the
signal must be taken into account in order to provide a quantifier which is not affected by these variables. On the
other hand, and once the analysis based on IRm leads us to conclude that the process is indeed HVG-irreversible, we
will then use KLDm(in||out) as a bound for the true (thermodynamic) entropy production rate of the process.
In the next sections we will compute HVG-reversibility metrics, but in order to lower down verbosity we will refer to
it indistinctively as either HVG-reversibility or just reversibility.

IV. EXPERIMENTAL RESULTS

A. Irreversibility

To start, we have explored the confidence of time series irreversibility –as quantified by IRm– for all the pieces
considered in this work. In the left panel of figure 7 we depict in semi-log scales the normalised histograms P (IRm)
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Figure 6: (a) Raw order-1 irreversibility value KLD1(in||out) of a time series of size N generated by a reversible white noise
process xt = η, η ∼ Uniform(0,1) (red crosses). For comparison, the results of a null model (mean ± one standard deviation)
where we randomize the original time series 200 times and compute the irreversibility value is shown in black solid circles. The
raw irreversibility value decreases without bounds in a fashion similar to the null model, certifying that positive irreversibility
values are here only due to finite size effects which vanish as N increases. (b) Order-1 irreversibility ratio IR1 for the process
depicted in panel (a), certifying that the time series is not distinguishable from a reversible process for any time series size.
(c) Similar to (a), for a time series of size N generated by an irreversible, fully chaotic logistic map xt+1 = 4xt(1 − xt) (red
crosses). The raw irreversibility value is always positive and stabilizes for N > 103. The null model is by definition reversible,
and its irreversibility value is only positive due to finite size effects, hence decreases as N increases. Distinguishability therefore
increases with N . (d) Similar to (b), for the chaotic case, certifying that the process is irreversible and that the level of
confidence increases without bounds.

Figure 7: (Left) Estimated normalized histogram of irreversibility ratios IRm (m = 1, 2, 3) for all pieces in our dataset, in
a semi-log plot. The green area highlights the region where pieces are reversible. A large portion of the pieces are indeed
generated by an irreversible process. (Middle) Abundance per irreversibility confidence class. (Right) Estimated normalized
histogram of raw irreversibility values KLD1(in||out), for all pieces (black) and only those pieces which have previously been
certified as irreversible (i.e. IR1 > 1) (orange). A linear binning of size 0.05 as been performed.
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for m = 1, 2, 3. The orange area denotes the region IRm > 1, showing that a large percentage of pieces are irreversible
(HVG-irreversible) at all m orders, with varying degree of confidence.
A second observation is that the histograms for m = 2 and m = 3 are indeed very similar. In order to further
understand to which extent the three measures IR1, IR2 and IR3 are correlated, we have computed the Pearson
correlation coefficient between IRm and IRm−1 (see appendix figure 14), showing that indeed we find a strong
correlation between all of them. The interpretation of this finding is two-fold: we can first argue that, in the
context of classical music and the database analysed in this work, higher-order irreversibility is irrelevant, and all the
structure can be efficiently captured by order-1 HVG-reversibility. Second, this also means that from now on we can
safely focus our analysis on m = 1, which is notably faster to estimate.
The abundance of each irreversibility confidence class is depicted in the middle panel of figure 7, showing that all four
classes have a notable representation, where only about 30% of the whole dataset complies with a reversible structure.
In the right panel of the same figure we have plotted in semi-log the normalized histogram of KLD1(in||out), for
all pieces (black curve) and only for those pieces which have previously been certified to be irreversible (IR1 > 1).
In both cases, values mostly concentrate in the interval [0, 1], and most of the pieces with high irreversibility value
(e.g. KLD1(in||out) > 0.1) correspond to those pieces previously checked to be indeed irreversible according to the
irreversibility ratio criterion. Distributions decay rapidly in both cases, highlighting that this measure is highly
concentrated towards the left end of the spectrum.

Rank Composer 〈KLD1(in||out)〉 DOB number of pieces
1 Bizet 0.28 1838 21
2 Mahler 0.19 1860 28
3 Dowland 0.18 1563 61
4 Desprez 0.178 1521 34
5 Paganini 0.155 1782 24

Table I: Ranking of most irreversible composers.

We can now concentrate on the subset of pieces which are certified to be irreversible (IR1 > 1), and we can rank
both composers and pieces according to their net irreversibility value. For composers, this ranking is shown in table
I. Since irreversibility is linked with entropy production, we could provocatively say that this is a ranking of the
composers which, on average, have a ‘more out of equilibrium’ compositional process, i.e. the composers whose
compositional style dissipates more energy and on average produce more entropy accordingly. A similar ranking for
the most irreversible pieces is depicted in table II.

Rank Piece KLD1(in||out) Composer DOB Piece length
1 Silhouettes 09 5.33 Dvorak 1841 269
2 Gadfly 97a,3 3.82 Shostakovitch 1906 492
3 Swan Lake (Act4,25 Entract e) 3.57 Tchaikovsky 1840 179
4 Kinderszenen 15 10 2.45 Schumann 1810 199
5 Messiah 14 2.22 Handel 1685 96

Table II: Ranking of most irreversible pieces.

In order to explore the evolution of irreversibility over different periods, in Fig. 8 we plot the values of IR1 (top) and
KLD1(in||out) (bottom) for all pieces as a function of the date of birth of the composer of the piece. Interestingly,
the irreversibility ratios seem to fluctuate in a non-random way. To highlight such modulation, in panel (b) of figure
8 we plot the same data and we add as orange dots the result of a linear binning (bins of 45 year size). The green
dashed dot corresponds to the best fit of a cubic polynomial to the binned data, highlighting an apparent modulation
inside musical compositions over different time periods. In panel (c) of the same figure, instead of displaying the
IR1 for each piece, we average per composer and plot the average irreversibility ratio 〈IR1〉 for each composer, as a
function of the composer’s date of birth. A cubic polynomial is once more fitted to this data, again highlighted the
modulated trend. Superposed to this figure we have highlighted the different musical periods (Renaissance, Baroque,
Classic, Romantic and early Modern). Since IR1 has a strong dependence on piece size and this is not the case for
KLD1(in||out) (see appendix C), a similar analysis is then replicated in panels (d− f) of Fig.8 for the irreversibility
value KLD1(in||out), tracking how irreversibility values (i.e., entropy production) evolves over time. The modulated
trend along the different musical periods is not anymore present. We can only conclude that over different periods,
different composers have systematically produced pieces which were irreversible, but the effect of different styles in
the particular value of irreversibility is less clear.
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Figure 8: Evolution of irreversibility over different musical periods. (a) Irreversibility ratio IR1 vs the composer’s date
of birth of each piece (crosses), for all pieces considered. The red solid line denotes the irreversibility threshold, suggesting that
most of the pieces are statistically irreversible. (b) Similar to panel (a), but where a cubic function (green dashed line) has
been fitted to data after a linear binning (in periods of 45 years) has been performed. The fit highlights a modulating trend
by which compositions net irreversibility confidence tend to vary over different periods. (c) Similar to the (a) panel, but where
irreversibility ratio is averaged over all the pieces of the same composer (one data point per composer). The modulating trend
is still present, and for reference we also include the different musical periods (Renaissance, Baroque, Classical, Romantic and
early Modern). (d) Similar to (a), but where we plot the raw irreversibility value KLD1(in||out) as a proxy for the entropy
production rate per piece. Qualitatively the same pattern as in (a) emerges. (e) Similar to (b) but where we plot KLD1(in||out).
Orange dots correspond to a linear binning and can be interpreted as the average entropy production rate of all pieces over each
45-year periods. This rate is maintained approximately constant over time. The fit is a local estimated scatterplot smoothing
(LOESS). (f) Similar to (c), but averaging the value KLD1(in||out) for all pieces of each artist separately. This gives us a proxy
for an average entropy production rate per composer.

Figure 9: Nonlinearity index. (Left panel) Histogram of the nonlinearity index ξ (see the text) for all pieces considered.
(Right panel) Nonlinearity index ξ as a function of the composer’s date of birth.

B. A nonlinearity index ξ

To complement the irreversibility analysis of musical compositions, in a second step we consider the temporal
arrangement of note sequences within each piece. While it has been extensively certified that music evidences long-
range temporal correlations with (typically) a heavy tailed power spectrum [1, 3, 7, 8], less is known about nonlinear
correlations. However, recent studies have reported evidence of nonlinear correlations in musical pieces and discussed
on their possible relevance in their structure [20].



12

In order to assess the amount of nonlinear temporal correlations, we define a nonlinearity index ξ inspired in the
index previously introduced in [39] by computing the significance (and the amount of nonlinearity) in the Magnitude
Detrended Fluctuation Analysis (MDFA) of each musical piece and its Fourier-fixed surrogates (null model with linear
correlations). Basically for the calculation of ξ we compare both MDFA computations (original and surrogates) in
terms of the local slopes of a fitting polynomial (ŷ) for the function F (s)/s (see Appendix B for details):

ξ =
1

Nws

Nws∑
i=1

|ŷ′(xi)− 〈ŷ′s(xi)〉sur|
σ(ŷ′s(xi))sur

, (4)

where Nws is the total number of windows of size s, ŷ′(xi) is the first derivative of the polynomial evaluated at the
ith window of size (xi = log(si)) and 〈ŷ′s(xi)〉sur and σ(ŷ′s(xi))sur represent the mean and variance of the slopes
in the ensemble of surrogates at the ith window size respectively (see Appendix B for more details). Surrogates
were generated with the Iterative Amplitude Adjusted Fourier Transform (IAAFT) algorithm [38, 42], preserving the
marginal distribution and the power spectrum of the original piece.
By construction, ξ ≤ 1 would indicate that the signal only evidences (at most) linear correlations, whereas if ξ > 1
then the signal has correlations of nonlinear nature (not reflected in the power spectrum), and the larger ξ the stronger
they are [42]. In Figure 9 we measure the nonlinearity index ξ for all the pieces considered in the database. The left
panel displays its frequency histogram, certifying that indeed a large majority of pieces display a high nonlinearity
index. In the right panel of the same figure we plot ξ as a function of the piece composer’s date of birth. Notably,
we find that a substantial amount of all musical compositions considered display different degrees of nonlinearity, and
the similarity of this panel with panels (a) and (d) in Figure 8 is suggestive. Note that though evidence for different
profiles of nonlinear correlations in music scores has been reported previously [20], a specific index such as ξ, able to
quantify the amount of nonlinearity in a signal, was lacking.

C. Irreversibility vs nonlinearity

In order to understand and link the concept of time irreversibility to nonlinearity, we have investigated to
which extent the irreversible character holds when the pieces keep their linear correlations structure but are
randomized otherwise. For each piece we have therefore constructed a surrogate piece where the linear correlation
structure (power spectrum) is maintained by applying the same technique to the one described previously (IAAFT
surrogates), and we then compared IR1 in both cases. In the left panel of figure 10 we compare the histograms
of IR1 for all pieces and for all surrogate pieces. Interestingly, in the case of the surrogates a large percentage
of the pieces now display HVG-reversibility (see the middle and right panel of the same figure for a graphical
demonstration of the irreversibility loss induced by surrogating the signals). This result can be explained as
follows: Gaussian linear processes with a prescribed power spectrum are indeed reversible. We can understand
surrogate pieces as stochastic processes with a prescribed power spectrum (the same as the original piece) but no
additional temporal correlation kernels beyond the linear one, and therefore by construction surrogates should be
time reversible. All in all, these results point to the fact that time series irreversibility has a connection to nonlinearity.

Such connection is reinforced by the similarity between the right panel of Figure 9 (nonlinearity index ξ) and panels
(a) and (d) of Figure 8 where we display the values of IR1 and KLD1(in||out) for all pieces as a function of the date of
birth of the composer of the piece. Since the method we use to estimate the amount and significance of nonlinearity
has been proved to depend on the length of the series [43] (see appendix B), for the estimation of the statistical
dependence between nonlinearity and any other property we use the mean value for the local slopes in the MDFA
function, which is also related with the amount of nonlinearity and is less dependent of the length of the series [39]
(see Appendix B):

〈ŷ′(x)〉 =
1

Nws

Nws∑
i=1

ŷ′(xi), (5)

where ŷ(x) is the polynomial fitted for log(F (s)/s) used for the calculation of the index ξ (quantities are determined
before the significance test in equation 4). In order to quantify the apparent correlation between nonlinearity and
irreversibility, we have computed the mutual information between the amount of nonlinearity proxy 〈ŷ′(x)〉 and
KLD1(in||out) for all pieces and also for the subset of irreversible pieces, using the discrete mutual information
between two random variables X,Y

MI(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (6)
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Figure 10: Irreversibility is closely related to nonlinearity. (a) Histogram of IR1 for all pieces considered, compared
to a similar histogram applied on surrogate pieces where the linear correlation structure (power spectrum) is maintained and
other (nonlinear) temporal correlations are removed. We observe that a very large percentage of the surrogate pieces are time
reversible, in agreement with the theory. (b,c) IR1 of each of the 8856 pieces considered, where we clearly see that many
of these are confidently irreversible. Their surrogates, where only linear temporal correlations are maintained, are however
largely reversible: the construction of the surrogates removes in most of the cases the irreversible character of the original
pieces, further demonstrating that statistical irreversibility is a property that cannot be explained by linear correlations (power
spectrum) and ought to be related to nonlinear traits.

we define a mutual information confidence index, in the same fashion as nonlinearity and irreversibility indexes, by
substracting the average 〈MI〉null and dividing by the standard deviation σ(MI)null of a null model:

MIindex =
MI− 〈MI〉null
σ(MI)null

, (7)

where the null model is generated random shuffling the elements of one of the variables. The MI indexes are computed
by sampling 1000 realizations of the null model. We chose this statistical dependence measure because it captures all
kind of correlations (linear and nonlinear) that would be relevant for this case, in contrast with other measures that
assume linear dependencies (e.g. Pearson or Spearman coefficients).
Results of MIindex are plotted in figure 11. We conclude that HVG-irreversibility is indeed intimately related in musical
compositions with the presence of nonlinear correlations in the signal. Noting that HVG-reversibility is a proxy for
entropy production, this relation manifests a link between a physical concept (dissipation and entropy production)
and a statistical one (nonlinear temporal correlations), hence giving a physical interpretation to the latter.

Figure 11: Mutual Information index MIindex between irreversibility, nonlinearity and asymmetry. Significance
for the mutual information between the three properties: Irreversibility (KLD1(in||out)) as defined in equation 2, nonlinearity
(〈ŷ′(x)〉) defined in the equation 5 and asymmetry (D↑↓) as defined in the equation 8. The red solid line determines the
threshold above which there is a statistically significant correlation between indices (the larger MIindex, the stronger). On the
x-axis: (a-i) Asymmetry vs Irreversibility, (n-i) Nonlinearity vs Irreversibility and (n-a) Nonlinearity vs Asymmetry. Triangles
represent the MI significance for all the pieces, while squares display the same quantities computed only considering the pieces
which are confidently irreversible (IR1 > 1). The error bars represent the 95% confidence intervals computed by bootstrapping
with replacement.
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D. Interval asymmetry

With the aim of linking the patterns observed in terms of irreversibility and nonlinearity with a quantity of musical
significance, we finally consider the statistics of intervals. An interval is defined as the distance between two consecutive
notes in a musical piece. For a given sequence of N notes (nt)

N
t=1, one can define its respective sequence of intervals

as (it)
N−1
t=1 , with it = nt+1 − nt, whose properties have been previously analysed [50–54]. One particular known

result is that small intervals are predominantly descending while large ones are typically ascending [49]. This property
introduces an asymmetry in the distribution of intervals which, intuitively, would contribute to the heterogeneity
of the joint distributions of consecutive notes in melodic sequences. In order to investigate the relation between
interval asymmetry, irreversibility and nonlinearity, we first look at the interval distribution of the set of pieces
we studied. We only consider intervals shorter or equal to an octave (12 semitones) since larger intervals are less
frequent. Figure 12 displays the interval distributions observed in the complete set of original pieces (left panel) and

Figure 12: Interval distributions. (Left panel) Distribution of the intervals for the all the pieces in this study. (Right panel)
Distribution of the intervals for the ensemble of surrogates constructed in the nonlinearity test.

for the ensemble of surrogates generated previously in the nonlinearity test (right panel). The most evident difference
between both distributions is the frequency of the zero interval (when the note keeps the same value), which is lower
for the original pieces. The claim of the difference between ascending and descending intervals holds in our data, the
inverals −4,−3,−2,−1 are more frequent than 4, 3, 2, 1 respectively, whereas the interval 5 is more frequent than −5.
However, it is not clear that for larger intervals the claim holds. Since the interval distributions are computed for the
whole corpus (over 8000 pieces) and not for individual pieces we cannot relate directly this distribution asymmetry
with irreversibility. To explore the interval statistics on individual pieces and the possible relation of the asymmetry
with nonlinearity and irreversibility we measure the difference between positive (ascending) and negative (descending)
intervals (D↑↓) for a given piece:

D↑↓ =
|I↑ − I↓|
I↑ + I↓

, (8)

where I↓ is the number of negative intervals (when it < 0) and I↑ the number of positive ones (it > 0). If the interval
distribution of a piece is symmetric (same number of ascending and descending intervals) then the difference D↑↓ = 0
and if there is only one direction in the melody (ascending or descending) the difference would be D↑↓ = 1.

Results for the interval difference (D↑↓) are shown in fig 13, where D↑↓ is determined for all the original pieces
and for their ensemble of surrogates. First panel (left) shows the distributions for the values of interval difference
(D↑↓), the second panel (right) is a plot of the average value of D↑↓ for each composer. We systematically find a
strong interval assymmetry in a large part of the musical pieces. According to the Mutual Information index (figure
11) D↑↓ indeed strongly correlates with the HVG-irreversibility metric KLD1(in||out), and to a lesser extent with
the nonlinearity metric 〈ŷ′(x)〉, thus concluding that the irreversibility and nonlinearity traits observed in musical
compositions can indeed be narrowed down to musical concepts.

V. DISCUSSION

In this work we have made use of tools from statistical physics, nonlinear dynamics and graph theory to characterise
music scores beyond the linear correlation paradigm provided by the power spectrum, in terms of time irreversibility,
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Figure 13: Interval difference. (Left panel) Distributions of the values of D↑↓ for all the pieces in the study. (Right panel)
Mean value of the interval difference for each composer.

nonlinear temporal correlations and asymmetric distribution of note intervals. All of these properties intervene
in what could be called a “musical narrative”, the flow of a composition. We have established different levels of
correlations amongst these quantifiers, some of which invite to reflection. For instance, the finding that in musical
compositions nonlinear traits show a considerable correlation with irreversibility, which is a natural hallmark of
time directionality, unravels the unforeseen notion that nonlinearity is related to a preferential time arrow. By
means of our interval asymmetry exploration we have further found evidence which suggests that –at least some
of– the amount of irreversibility present in musical compositions can be explained in the light of such interval
asymmetry. Furthermore, its ensuing connection to nonlinearity gives new insight. It is enticing to associate the idea
of irreversibility to structure in the scores at multiple time scales, intercalated with bursts of elements of surprise, it
may well be that the degree of irreversibility is linked to the balance between these two factors.

Interestingly, the concepts of irreversibility, directionality and their musical implications have been qualitatively
evoked in music theory under multiple forms. For instance, temporal directionality has been established in terms of
irreversible relations of before and after [44]. According to Hastey [44], for some theorists “directionality arises in the
compositions only through our ability to predict the future course of events. In tonal music a leading tone or passing
dissonance implies an expected resolution. Such expectations whether realized or not, constitute in our imagination
goals toward which the music is directed”. On the other hand, irreversibility was one of the main concerns of
musicians such as Anton Webern, one of the exponents of atonality and serialism. Similarly, alegoric relations to
thermodynamics and information theory have been previously explored by musicians e.g. Iannis Xenakis, father of
stochastic music [45]. Our approach provides a novel quantitative description of these concepts.
In other works, the complexity of music has often been related to linear temporal correlations, using 1/f noise as a
paradigm offering a balance between predictability and surprise and justifying its enjoyment. However, in our study
we show that preserving the exact same power spectrum is not enough to preserve properties such as irreversibility
(Fig.10), interval asymmetry (Fig.13) or nonlinearity (by construction). The fact that these properties are pervasive
across five centuries of classical music, together with the observation that such emergence is nontrivial (for instance
Gaussian linear stochastic processes are indeed statistically time reversible), challenge the traditional link between
pleasantness and linear correlations in music. Furthermore, these three properties show to be statistically related,
a result that points to a deep relation between directionality, dissipation, and nonlinearity and their possible
relations with the pleasantness in music, a dimension that might be instrumental for the study of perception, music
appreciation and cognition.

Summing up, while the statistical properties underlying musical compositions have mainly focused on the presence of
linear correlations in the signal (again, the 1/f noise paradigm), here we show that classical music compositions over
five centuries, encompassing pieces from 77 composers from the Renaissance up to the early modern period, display
strong nonlinear correlations. We have certified that such nonlinearities are indeed strongly related to an adequate
definition of statistical time irreversibility (HVG-irreversibility), able to quantify the statistical arrow of time in
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stationary and nonstationary signals alike and well-defined to handle short sequences. Since HVG-reversibility
–as quantified by the Kullback-Leibler divergence between the in and out order-m degree distributions of the
signal’s horizontal visibility graphs– is a proxy for the amount of thermodynamic entropy produced by a physical
signal, exploring time irreversibility in musical compositions allows us to quantify the process of composition in
out-of-thermodynamic-equilibrium’ terms. We indeed find that over two thirds of the compositions display this
signature. Our study of the value of KLD1(in||out), which is independent of the piece size, shows only small variations
over musical periods and thus leads us to conclude that this is a common trait of tonal music.

This work should be taken as a first step of a more in depth, inclusive research program. The three main elements of
music are rhythm, melody and harmony [46]. While here we have only addressed melody, we expect the integration
of rhythm and harmony in our line of research to be enlightening. The update of our study in order to include the
advent of atonal-dodecaphonic, serial, stochastic, concrete and spectral music, amongst others, is another fascinating
open challenge.
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Appendix A: Correlations among different Irreversibility Ratio orders

In (a) and (b) panels of figure 14 we scatter-plot (in linear-log scales, for the sake of illustration) the Irreversibility
ratios IRm vs IRm−1 for every piece in the dataset, and compute the Pearson correlation coefficient, finding r = 0.93
for IR2 vs IR1 and r = 0.95 for IR3 vs IR2, i.e. very strong correlation. In the (c) and (d) panels of the same figure,
a similar analysis is performed (scatter-plots are in linear scales), but we average a single irreversibility ratio per
composer (averaging over all the pieces for the same composer), and then correlate 〈IRm〉 vs 〈IRm−1〉. Again we find
very strong correlation (r = 0.92 and 0.97 respectively). Altogether, these results suggest that all three quantities
are linearly correlated, meaning that (i) there are no high-order HVG-irreversibility structures in the set of musical
compositions analysed, and (ii) accordingly, it is enough to set m = 1 and safely focus on IR1 to fully account for
irreversibility in this context.

Figure 14: Irreversibility ratios of different order are correlated. (a,b) Linear-log scatter plots of Irreversibility ratios
IRm vs IRm−1 for each piece in the dataset. The red dashed line is the best linear fit, concluding that all three orders are
strongly correlated. (c,d) Linear scatter plots of composer-averaged irreversibility ratios. The strong correlation observed
suggests that for the set of signals analysed in this work, IR1 is sufficient to characterise irreversibility and no higher-order
quantifiers are needed.

Appendix B: DFA and Magnitude DFA

The Detrended Fluctuation Analysis (DFA) method, developed by Peng et al. to compute the long range correlations
in stationary and nonstationary time series[41]. A brief description of the method is as follows: for a given time series
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Figure 15: DFA and MDFA calculations. One example of a piece from Liszt (excerpt from Christmas tree suite), a) DFA
computation with 20 surrogates represented by the shaded area, a polynomial (ŷ) of order 4 (line) is fitted to the original piece.
b) MDFA computation. c) Slope values for the DFA computation. d) Slope values for the MDFA computation.

x(i), i = 1, ..., N , the standard DFA method consists in the following steps: 1) the original signal is integrated

y(j) =
∑j
i=1 [x(i)− 〈x〉], where 〈x〉 denotes its average value, 2) the integrated time series is then divided into non-

overlapping windows of size s. 3) Each data segment of length s-size is then fitted using a polynomial ym(j) of degree
m. 4) Next, the root-mean-square fluctuation from the polynomial, F (s), is calculated:

F (s) =

√√√√ 1

N

N∑
j=1

[y(j)− ym(j)]
2
. (9)

The procedure is repeated by varying s such that the fluctuation function is obtained in terms of the segment length,
which represents the time scale where correlations might be present. When auto-correlations scale like a power law,
the rms fluctuation function F (s) behaves as F (s) ∼ sα, where α is the Hurst exponent. A value of α > 0.5 indicates
the presence of persistent correlations, e.g. α = 1 is the case for 1/f noise. On the other hand, a value of 0 < α < 0.5
corresponds to anti-correlations and α = 0.5 to white noise The magnitude Detrended Fluctuation Analysis (MDFA)
introduced by Ashkenazy et al[39] is a method capable to detect the presence of nonlinear correlations in a time
series. This method can be summarized by the following recipe: 1) for a given time series x(i) the increment series
is defined as ∆x(i) ≡ x(i + 1) − x(i), 2) the increment series is decomposed into a magnitude series and sign series:
∆x(i) = sgn(∆x(i)) | ∆x(i) |, their respective means are subtracted to avoid artificial trends, 3) because of the
limitations of the DFA method for estimating α < 0.5 (anti-correlated series), the magnitude and sign series are
integrated first to make sure they are positively correlated. 4) The DFA method is implemented on the integrated
magnitude and sign series. 5) In order to obtain the respective scaling exponents, the function F (s)/s is estimated,
the 1/s factor is to compensate the integration made before. If the data obey a scaling law, the fluctuation function
should behave as F (s)/s ∼ sα−1. It has been shown that the magnitude series (| ∆x(i) |) is the one that carries
information regarding nonlinear correlations in the original time series[40].

To evaluate the evidence and amount of nonlinear correlations it is necessary to compare the MDFA results with
the appropriate surrogate data results, these surrogates preserve the linear correlations of the original time series but
lack of any possible nonlinear correlations. We generate 20 surrogates for each piece with the Iterative Amplitude
Adjusted Fourier Transform (IAAFT) algorithm [38, 42]. In panels a and b from figure 15 the results for both original
piece (red crosses) and surrogates (shaded area) are shown, the diference of the original data from the surrogates
in panel b is evidence for the presence of nonlinear correlations. However, the functions F (s) and F (s)/s do not
necessary follow a power law behavior. To be able to quantify the amount of nonlinearity in the time series we define
a nonlinearity index ξ, given by comparing the scaling behavior of the original data and its surrogates. The proper
comparison should be given by the slope of the original data and the slopes of the null model [39]. In our case, instead
of having a single scaling we have different regions with different scalings. In order to compare both scaling behaviors
we first fit a polynomial ŷ to the original MDFA data and to each of its surrogates (ŷs), evaluate the first derivative
of ŷ (slopes) at each point (log(s)) in the MDFA and compute the index ξ as follows:

ξ =
1

Nws

Nws∑
i=1

|ŷ′(xi)− 〈ŷ′s(xi)〉sur|
σ(ŷ′s(xi))sur

, (10)

where Nws is the total number of window sizes, ŷ′(xi) is the slope the polynomial evaluated at the ith window size
(xi = log(si)) and 〈ŷ′s(xi)〉sur and σ(ŷ′s(xi))sur represent the mean and variance of the slopes in the ensemble of
surrogates at the ith window size respectively. By construction, ξ ≤ 1 would indicate that the signal only evidences
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Figure 16: Effect of piece length on the nonlinearity index ξ, mean local slope 〈ŷ′(x)〉 and asymmetry D↑↓.

(at most) linear correlations, whereas if ξ > 1 the signal has correlations of nonlinear nature (not reflected in the
power spectrum), and the larger ξ the stronger.

Figure 17: Effect of piece length on IR1 and KLD1(in||out) As shown by R2, there are subtle correlations of the
irreversibility ratio and irreversibility value with piece length (panels left and middle), and this correlation is removed (right
panel) if we only consider the irreversibility value KLD1(in||out) the pieces which have been previously certified to be irreversible
(IR1 > 1).

Appendix C: Dependencies of IR1 and KLD1(in||out) with series size

According to the theoretical analysis conducted in Fig.6, let us assume that a time series of size N is generated by
a certain dynamical process. Then we have that

• if the process is reversible, then IR1 is systematically below 1 and is insensitive to series size N and on the other
hand KLD1(in||out) decreases with series size.

• if the process is irreversible, then KLD1(in||out) is reasonably stable and insensitive to series size N , whereas
IR1 is expected to grow with series size.

Let us consider now the musical pieces. Each of them is composed by different composers (so a priori by a possibly
different ‘dynamical process’), and each of them has different length, spanning from dozens to thousands of notes.
Comparison across composers and pieces is therefore difficult. In Fig.17 we depict the values of IR1 and KLD1(in||out)
as a function of the piece length N for all pieces in the dataset (left and middle panels) and only for those pieces that
have been certified as irreversible, i.e. those for which IR1 > 1. Panels are in log-log to have a better visualisation of
all the points. We can see in the left panel a small increasing trend: this is indeed related to all those pieces which
are irreversible, whose irreversibility ratio IR1 tends to be larger for larger time series. Similarly, in the middle panel
we can appreciate a subtle decreasing trend: this is indeed related to all those pieces which are reversible, whose
reversibility value KLD1(in||out) tends to be smaller for larger time series. In the right where panel there is no trend
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with series length N which is indicative of the size independence of the irreversibility value KLD1(in||out).
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rank-ordering distributions in the arts and sciences. PLoS One, 4, e4791, 2009
[52] Jorge Useche, and Rafael Hurtado Melodies as Maximally Disordered Systems under Macroscopic Constraints with Musical

Meaning Entropy, 21, 532, 2019
[53] D Zanette Zipf’s law and the creation of musical context. Music. Sci., 10, 3-18, 2006
[54] G Niklasson, and M Niklasson Non-Gaussian distributions of melodic intervals in music: The Lévy-stable approximation.
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