25 research outputs found

    Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

    Get PDF
    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.Peer reviewe

    Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production

    Get PDF
    MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, 1/2, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.Peer reviewe

    LHCb calorimeters: Technical Design Report

    Get PDF

    LHCb magnet: Technical Design Report

    Get PDF

    LHCb RICH: Technical Design Report

    Get PDF

    LHCb inner tracker: Technical Design Report

    Get PDF

    LHCb muon system: Technical Design Report

    Get PDF

    Preliminary risk anaslysis for the LHCb vertex detector

    No full text
    We present a preliminary risk analysis for the LHCb vertex locator (VELO). The scope of this risk analysis is to identify possible failure scenarios at the LHCb VELO and estimate the ensuing damage to equipment and downtime for LHC. Further, on the basis of a (preliminary) risk level for acceptability, we formulate requirements and suggest a number of precautions for the design of the VELO system

    Technical Design Report of the MoEDAL Experiment

    No full text
    The principal aim of the MoEDAL (Monopole and Exotics Detector at the LHC) project is to directly search for the Magnetic Monopole and other highly ionizing Stable (or pseudo-stable) Massive Particles (SMPs) at the LHC. The MoEDAL detector is comprised of an array of plastic Nuclear Track Detectors deployed in the LHCb-VELO cavern at point 8, on the LHC ring. This Technical Design Report details the motivation and physics reach of the experiment, the design of the MoEDAL detector and the operating parameters of the experiment
    corecore