36 research outputs found

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    This is the final version. Available from American Astronomical Society via the DOI in this record.The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting ∌2000 PGCCs in J = 1-0 transitions of CO isotopologues and ∌1000 PGCCs in 850 ÎŒm continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are ∌6200 M, ∌12 pc, and ∌500 Mpc-1, respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (ÎČ) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.German Research FoundationJoint Research Fund in AstronomyTop Talents Program of Yunnan ProvinceAcademy of FinlandMinistry of Education, Science, and TechnologyNational Research Foundation of KoreaChinese Academy of SciencesMinistry of Science and Technology of TaiwanEuropean Research Counci

    A massive core for a cluster of galaxies at a redshift of 4.3

    Get PDF
    Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs1,2,3. The high-redshift progenitors of these galaxy clusters—termed ‘protoclusters’—can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter4,5,6. Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts7. However, recent detections of possible protoclusters hosting such starbursts8,9,10,11 do not support the kind of rapid cluster-core formation expected from simulations12: the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today

    The role of complex cues in social and reproductive plasticity

    Get PDF
    Phenotypic plasticity can be a key determinant of fitness. The degree to which the expression of plasticity is adaptive relies upon the accuracy with which information about the state of the environment is integrated. This step might be particularly beneficial when environments, e.g. the social and sexual context, change rapidly. Fluctuating temporal dynamics could increase the difficulty of determining the appropriate level of expression of a plastic response. In this review, we suggest that new insights into plastic responses to the social and sexual environment (social and reproductive plasticity) may be gained by examining the role of complex cues (those comprising multiple, distinct sensory components). Such cues can enable individuals to more accurately monitor their environment in order to respond adaptively to it across the whole life course. We briefly review the hypotheses for the evolution of complex cues and then adapt these ideas to the context of social and sexual plasticity. We propose that the ability to perceive complex cues can facilitate plasticity, increase the associated fitness benefits and decrease the risk of costly ‘mismatches’ between phenotype and environment by (i) increasing the robustness of information gained from highly variable environments, (ii) fine-tuning responses by using multiple strands of information and (iii) reducing time lags in adaptive responses. We conclude by outlining areas for future research that will help to determine the interplay between complex cues and plasticity

    First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt

    Get PDF
    We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions that the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous "integral filament" in the densest regions of that filament. Furthermore, we see an "hourglass" magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density northeastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.Includes Horizon 2020 and STFC

    A First Look at BISTRO Observations of the rho Oph-A core

    Get PDF
    We present 850 ÎŒm imaging polarimetry data of the ρ Oph-A core taken with the Submillimeter Common-User Bolometer Array-2 (SCUBA-2) and its polarimeter (POL-2) as part of our ongoing survey project, B{\boldsymbol{B}}-fields In STar forming RegiOns (BISTRO). The polarization vectors are used to identify the orientation of the magnetic field projected on the plane of the sky at a resolution of 0.01 pc. We identify 10 subregions with distinct polarization fractions and angles in the 0.2 pc ρ Oph-A core; some of them can be part of a coherent magnetic field structure in the ρ Oph region. The results are consistent with previous observations of the brightest regions of ρ Oph-A, where the degrees of polarization are at a level of a few percent, but our data reveal for the first time the magnetic field structures in the fainter regions surrounding the core where the degree of polarization is much higher (>5%). A comparison with previous near-infrared polarimetric data shows that there are several magnetic field components that are consistent at near-infrared and submillimeter wavelengths. Using the Davis–Chandrasekhar–Fermi method, we also derive magnetic field strengths in several subcore regions, which range from approximately 0.2 to 5 mG. We also find a correlation between the magnetic field orientations projected on the sky and the core centroid velocity components

    The JCMT BISTRO Survey: The Magnetic Field in the Starless Core ρ Ophiuchus C

    Get PDF
    We report 850 ÎŒm dust polarization observations of a low-mass (~12 M ⊙) starless core in the ρ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In STar-forming Region Observations survey. We detect an ordered magnetic field projected on the plane of the sky in the starless core. The magnetic field across the ~0.1 pc core shows a predominant northeast–southwest orientation centering between ~40° and ~100°, indicating that the field in the core is well aligned with the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-scale magnetic field traced by Planck observations. The polarization percentage (P) decreases with increasing total intensity (I), with a power-law index of −1.03 ± 0.05. We estimate the plane-of-sky field strength (B pos) using modified Davis–Chandrasekhar–Fermi methods based on structure function (SF), autocorrelation function (ACF), and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield strengths of 103 ± 46 ÎŒG, 136 ± 69 ÎŒG, and 213 ± 115 ÎŒG, respectively. Our calculations suggest that the Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e., unstable to collapse). The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C, while the ACF method and the UM method only set upper limits for the total magnetic energy because of large uncertainties

    The JCMT BISTRO Survey: The Magnetic Field in the Starless Core rho Ophiuchus C

    Get PDF
    We report 850 ÎŒm dust polarization observations of a low-mass (~12 M ⊙) starless core in the ρ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In STar-forming Region Observations survey. We detect an ordered magnetic field projected on the plane of the sky in the starless core. The magnetic field across the ~0.1 pc core shows a predominant northeast–southwest orientation centering between ~40° and ~100°, indicating that the field in the core is well aligned with the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-scale magnetic field traced by Planck observations. The polarization percentage (P) decreases with increasing total intensity (I), with a power-law index of −1.03 ± 0.05. We estimate the plane-of-sky field strength (B pos) using modified Davis–Chandrasekhar–Fermi methods based on structure function (SF), autocorrelation function (ACF), and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield strengths of 103 ± 46 ÎŒG, 136 ± 69 ÎŒG, and 213 ± 115 ÎŒG, respectively. Our calculations suggest that the Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e., unstable to collapse). The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C, while the ACF method and the UM method only set upper limits for the total magnetic energy because of large uncertainties
    corecore