461 research outputs found

    Searching for New Physics in Leptonic Decays of Bottomonium

    Get PDF
    New Physics can show up in various well-known processes already studied in the Standard Model, in particular by modifying decay rates to some extent. In this work, I examine leptonic decays of Υ\Upsilon vector resonances of bottomonium below BBˉB\bar{B} production, subsequent to a magnetic dipole radiative structural transition of the vector resonance yielding a pseudoscalar continuum state, searching for the existence of a light Higgs-like neutral boson that would imply a slight but experimentally measurable breaking of lepton universality.Comment: LaTeX, 12 pages, 1 EPS figur

    N=4N=4 super KdV equation

    Get PDF
    We construct N=4N=4 supersymmetric KdV equation as a hamiltonian flow on the N=4  SU(2)N=4\;SU(2) super Virasoro algebra. The N=4N=4 KdV superfield, the hamiltonian and the related Poisson structure are concisely formulated in 1D  N=41D \;N=4 harmonic superspace. The most general hamiltonian is shown to necessarily involve SU(2)SU(2) breaking parameters which are combined in a traceless rank 2 SU(2)SU(2) tensor. First nontrivial conserved charges of N=4N=4 super KdV (of dimensions 2 and 4) are found to exist if and only if the SU(2)SU(2) breaking tensor is a bilinear of some SU(2)SU(2) vector with a fixed length proportional to the inverse of the central charge of N=4  SU(2)N=4\;SU(2) algebra. After the reduction to N=2N=2 this restricted version of N=4N=4 super KdV goes over to the a=4a=4 integrable case of N=2N=2 super KdV and so is expected to be integrable. We show that it is bi-hamiltonian like its N=2N=2 prototype.Comment: 11 pages, preprint ENSLAPP-L-415-9

    A Membrane Defect in the Pathogenesis of the Smith-Lemli-Opitz Syndrome

    Get PDF
    The Smith-Lemli-Opitz syndrome (SLOS) is an often lethal birth defect resulting from mutations in the gene responsible for the synthesis of the enzyme 3beta-hydroxy-steroid-Delta7-reductase, which catalyzes the reduction of the double bond at carbon 7 on 7-dehydrocholesterol (7-DHC) to form unesterified cholesterol. We hypothesize that the deficiency in cholesterol biosynthesis and subsequent accumulation of 7-DHC in the cell membrane leads to defective composition, organization, dynamics, and function of the cell membrane. Using skin fibroblasts obtained from SLOS patients, we demonstrate that the SLOS membrane has increased 7-DHC and reduced cholesterol content and abnormal membrane fluidity. X-ray diffraction analyses of synthetic membranes prepared to mimic SLOS membranes revealed atypical membrane organization. In addition, calcium permeability is markedly augmented, whereas membrane-bound Na+/K+ATPase activity, folate uptake, inositol-1,4,5-trisphosphate signaling, and cell proliferation rates are markedly suppressed. These data indicate that the disturbance in membrane sterol content in SLOS, likely at the level of membrane caveolae, directly contributes to the widespread tissue abnormalities in this disease

    Invariant vector fields and the prolongation method for supersymmetric quantum systems

    Full text link
    The kinematical and dynamical symmetries of equations describing the time evolution of quantum systems like the supersymmetric harmonic oscillator in one space dimension and the interaction of a non-relativistic spin one-half particle in a constant magnetic field are reviewed from the point of view of the vector field prolongation method. Generators of supersymmetries are then introduced so that we get Lie superalgebras of symmetries and supersymmetries. This approach does not require the introduction of Grassmann valued differential equations but a specific matrix realization and the concept of dynamical symmetry. The Jaynes-Cummings model and supersymmetric generalizations are then studied. We show how it is closely related to the preceding models. Lie algebras of symmetries and supersymmetries are also obtained.Comment: 37 pages, 7 table

    Power counting and effective field theory for charmonium

    Get PDF
    We hypothesize that the correct power counting for charmonia is in the parameter Lambda_QCD/m_c, but is not based purely on dimensional analysis (as is HQET). This power counting leads to predictions which differ from those resulting from the usual velocity power counting rules of NRQCD. In particular, we show that while Lambda_QCD/m_c power counting preserves the empirically verified predictions of spin symmetry in decays, it also leads to new predictions which include: A hierarchy between spin singlet and triplet octet matrix elements in the J/psi system. A quenching of the net polarization in production at large transverse momentum. No end point enhancement in radiative decays. We discuss explicit tests which can differentiate between the traditional and new theories of NRQCD.Comment: 18 pages, 1 figure Replaced plot of the psi polarization parameter alpha as a function of transverse momentum. Alpha is now closer to zero for large transverse moment

    Colour-Octet Effects in Radiative Υ\Upsilon Decays

    Full text link
    We investigate the effects of colour-octet contributions to the radiative Υ\Upsilon decay within the Bodwin, Braaten and Lepage NRQCD factorization framework. Photons coming both from the coupling to hard processes (`direct') and by collinear emission from light quarks (`fragmentation') are consistently included at next-to-leading order (NLO) in αs\alpha_s. An estimate for the non-perturbative matrix elements which enter in the final result is then obtained. By comparing the NRQCD prediction at NLO for total decay rates with the experimental data, it is found that the non-perturbative parameters must be smaller than expected from the na\"\i ve scaling rules of NRQCD. Nevertheless, colour-octet contributions to the shape of the photon spectrum turn out to be significant.Comment: 25 pages, Latex, 8 figure

    Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    Get PDF
    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves

    alpha^2 corrections to parapositronium decay: a detailed description

    Full text link
    We present details of our recent calculation of alpha^2 corrections to the parapositronium decay into two photons. These corrections are rather small and our final result for the parapositronium lifetime agrees well with the most recent measurement. Implications for orthopositronium decays are briefly discussed.Comment: 18 pages, late

    Radiative Corrections to the Muonium Hyperfine Structure. I. The α2(Zα)\alpha^2 (Z\alpha) Correction

    Full text link
    This is the first of a series of papers on a systematic application of the NRQED bound state theory of Caswell and Lepage to higher-order radiative corrections to the hyperfine structure of the muonium ground state. This paper describes the calculation of the α2(Zα)\alpha^2 (Z\alpha) radiative correction. Our result for the complete α2(Zα)\alpha^2 (Z\alpha) correction is 0.424(4) kHz, which reduces the theoretical uncertainty significantly. The remaining uncertainty is dominated by that of the numerical evaluation of the nonlogarithmic part of the α(Zα)2\alpha (Z\alpha )^2 term and logarithmic terms of order α4\alpha^4.Comment: 56 pages, Rev.tex V3.0 and epsf.tex. 12 postscript files are called in the text. Version accepted by Phys. Rev. D. A new table is adde
    corecore