87 research outputs found

    Current status of the research on transparent YAG ceramics as laser hosts from an Italian network

    Get PDF
    This work describes the results obtained using two different processing systems for the production of YAG based ceramics. One involves the use of commercially available oxide powders (Yb2O3, Y2O3, Al2O3) The other involves the use of Yb-doped Y2O3 (Yb, 9.8%) powders obtained by microwave assisted co-precipitation from salts solution and a commercial alumina (Al2O3). Both systems are processed by wet mechanical mixing of starting oxides and reactive sintering of the obtained mixtur

    Positivity to p-ANCA in patients with status epilepticus

    Get PDF
    BACKGROUND: Status epilepticus (SE) may occur in the setting of several internal or neurologic diseases. Anti-neutrophilic cytoplasmic antibodies (ANCA) are a group of Ig that may be observed in patients with different autoimmune disorders but are particularly associated with systemic vasculitis named ANCA-associated-vasculities (AAV). We herein report 3 patients with SE and positivity to p-ANCA. CASE PRESENTATION: One patient had a catastrophic evolution and died 5 months after disease onset. The other two patients had a good outcome and remained seizure-free at 30 months and 5 years of follow-up respectively. CONCLUSION: This report highlights the importance of considering ANCA dosage in patients with SE of unclear origin

    The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio Calabria (Italy): a review.

    Get PDF
    Bergamot (Citrus bergamia, Risso) grows exclusively in the province of Reggio Calabria (Southern Italy). Most part of this territory lies on by the Ionian or the Tyrrhenian sea, with over 700 kilometers of coastline, it has one of the highest values of heliophany in Italy and it is protected, from the Northern winds, by the Aspromonte mountain massif. Most part of the bergamot cultivation area is located between Scilla (West) and Monasterace (East) in a coastal strip with a width up to 12 km from the coast. Bergamot fruit is produced between November and March in relation to the geographical area. Over the last decades, environmental climate changes occurred also in this area. This phenomenon, together with new applied industrial processes may have influenced the bergamot essential oil composition. In addition, the modern analytical apparatus gives more detailed information. The aim of this review is to describe the evolution of studies on the volatile fraction of the bergamot peel essential oil over the years

    3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment.

    Get PDF
    We present a study of Yb:YAG active media slabs, based on a ceramic layered structure with different doping levels. We developed a procedure allowing 3D numerical analysis of the slab optical properties as a consequence of the thermal load induced by the pump process. The simulations are compared with a set of experimental results in order to validate the procedure. These structured ceramics appear promising in appropriate geometrical configurations, and thus are intended to be applied in the construction of High Energy Diode Pumped Solid State Laser (DPSSL) systems working in high repetition-rate pulsed regimes. (C) 2014 Optical Society of Americ

    A novel de novo HCN1 loss-of-function mutation in genetic generalized epilepsy causing increased neuronal excitability

    Get PDF
    Abstract The causes of genetic epilepsies are unknown in the majority of patients. HCN ion channels have a widespread expression in neurons and increasing evidence demonstrates their functional involvement in human epilepsies. Among the four known isoforms, HCN1 is the most expressed in the neocortex and hippocampus and de novo HCN1 point mutations have been recently associated with early infantile epileptic encephalopathy. So far, HCN1 mutations have not been reported in patients with idiopathic epilepsy. Using a Next Generation Sequencing approach, we identified the de novo heterozygous p.Leu157Val (c.469C > G) novel mutation in HCN1 in an adult male patient affected by genetic generalized epilepsy (GGE), with normal cognitive development. Electrophysiological analysis in heterologous expression model (CHO cells) and in neurons revealed that L157V is a loss-of-function, dominant negative mutation causing reduced HCN1 contribution to net inward current and responsible for an increased neuronal firing rate and excitability, potentially predisposing to epilepsy. These data represent the first evidence that autosomal dominant missense mutations of HCN1 can also be involved in GGE, without the characteristics of epileptic encephalopathy reported previously. It will be important to include HCN1 screening in patients with GGE, in order to extend the knowledge of the genetic causes of idiopathic epilepsies, thus paving the way for the identification of innovative therapeutic strategies

    Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    Get PDF
    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the''Guard-Hypothesis,'' R proteins (the ``guards'') can sense modification of target molecules in the host (the ``guardees'') by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the ``guardee-effector'' interface for pathogen recognition, natural selection acts on the ``guard-guardee'' interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen

    ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence

    Get PDF
    Background: The possibilities offered by next generation sequencing (NGS) platforms are revolutionizing biotechnological laboratories. Moreover, the combination of NGS sequencing and affordable high-throughput genotyping technologies is facilitating the rapid discovery and use of SNPs in non-model species. However, this abundance of sequences and polymorphisms creates new software needs. To fulfill these needs, we have developed a powerful, yet easy-to-use application. Results: The ngs_backbone software is a parallel pipeline capable of analyzing Sanger, 454, Illumina and SOLiD (Sequencing by Oligonucleotide Ligation and Detection) sequence reads. Its main supported analyses are: read cleaning, transcriptome assembly and annotation, read mapping and single nucleotide polymorphism (SNP) calling and selection. In order to build a truly useful tool, the software development was paired with a laboratory experiment. All public tomato Sanger EST reads plus 14.2 million Illumina reads were employed to test the tool and predict polymorphism in tomato. The cleaned reads were mapped to the SGN tomato transcriptome obtaining a coverage of 4.2 for Sanger and 8.5 for Illumina. 23,360 single nucleotide variations (SNVs) were predicted. A total of 76 SNVs were experimentally validated, and 85% were found to be real. Conclusions: ngs_backbone is a new software package capable of analyzing sequences produced by NGS technologies and predicting SNVs with great accuracy. In our tomato example, we created a highly polymorphic collection of SNVs that will be a useful resource for tomato researchers and breeders. The software developed along with its documentation is freely available under the AGPL license and can be downloaded from http://bioinf. comav.upv.es/ngs_backbone/ or http://github.com/JoseBlanca/franklin.Blanca Postigo, JM.; Pascual Bañuls, L.; Ziarsolo Areitioaurtena, P.; Nuez Viñals, F.; Cañizares Sales, J. (2011). Ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence. BMC Genomics. 12:1-8. doi:10.1186/1471-2164-12-285S1812Metzker ML: Sequencing technologies - the next generation. Nature Reviews Genetics. 2010, 11 (1): 31-46. 10.1038/nrg2626.454 sequencing. [ http://www.454.com/ ]Illumina Inc. [ http://www.illumina.com/ ]Flicek P, Birney E: Sense from sequence reads: methods for alignment and assembly (vol 6, pg S6, 2009). Nature Methods. 2010, 7 (6): 479-479.Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WEG, Wetter T, Suhai S: Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Research. 2004, 14 (6): 1147-1159. 10.1101/gr.1917404.Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009, 25 (14): 1754-1760. 10.1093/bioinformatics/btp324.Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology. 2009, 10 (3):Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data P: The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009, 25 (16): 2078-2079. 10.1093/bioinformatics/btp352.1000 Genomes. A deep Catalog of Human Genetic Variation. [ http://1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0 ]The seqanswers internet forum. [ http://seqanswers.com/ ]Blankenberg D, Taylor J, Schenck I, He JB, Zhang Y, Ghent M, Veeraraghavan N, Albert I, Miller W, Makova KD, Ross CH, Nekrutenko A: A framework for collaborative analysis of ENCODE data: Making large-scale analyses biologist-friendly. Genome Research. 2007, 17 (6): 960-964. 10.1101/gr.5578007.CloVR Automated Sequence Analysis from Your Desktop. [ http://clovr.org/ ]Papanicolaou A, Stierli R, Ffrench-Constant RH, Heckel DG: Next generation transcriptomes for next generation genomes using est2assembly. Bmc Bioinformatics. 2009, 10:Applied Biosystems by life technologies. [ http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing.html ]Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang HY, Landherr L, Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman N, dePamphilis CW: Comparison of next generation sequencing technologies for transcriptome characterization. Bmc Genomics. 2009, 10:Murchison EP, Tovar C, Hsu A, Bender HS, Kheradpour P, Rebbeck CA, Obendorf D, Conlan C, Bahlo M, Blizzard CA, Pyecroft S, Kreiss A, Kellis M, Stark A, Harkins TT, Marshall Graves JA, Woods GM, Hanon GJ, Papenfuss AT: The Tasmanian Devil Transcriptome Reveals Schwann Cell Origins of a Clonally Transmissible Cancer. Science. 2010, 327 (5961): 84-87. 10.1126/science.1180616.Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA: Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. Bmc Genomics. 2010, 11:Babik W, Stuglik M, Qi W, Kuenzli M, Kuduk K, Koteja P, Radwan J: Heart transcriptome of the bank vole (Myodes glareolus): towards understanding the evolutionary variation in metabolic rate. BMC Genomics. 2010, 11: 390-10.1186/1471-2164-11-390.Miller JC, Tanksley SD: RFLP analysis of phylogenetic-relationships and genetic-variation in the genus Lycopersicon. Theoretical and Applied Genetics. 1990, 80 (4): 437-448.Williams CE, Stclair DA: Phenetic relationships and levels of variability detected by restriction-fragment-length-polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon-esculentum. Genome. 1993, 36 (3): 619-630. 10.1139/g93-083.Rick CM: Tomato, Lycopersicon esculentum (Solanaceae). Evolution of crop plants. Edited by: Simmonds NW. 1976, London: Longman Group, 268-273.Labate JA, Baldo AM: Tomato SNP discovery by EST mining and resequencing. Molecular Breeding. 2005, 16 (4): 343-349. 10.1007/s11032-005-1911-5.Yano K, Watanabe M, Yamamoto N, Maeda F, Tsugane T, Shibata D: Expressed sequence tags (EST) database of a miniature tomato cultivar, Micro-Tom. Plant and Cell Physiology. 2005, 46: S139-S139.Jimenez-Gomez JM, Maloof JN: Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. Bmc Plant Biology. 2009, 9:Yang WC, Bai XD, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D: Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Molecular Breeding. 2004, 14 (1): 21-34.Van Deynze A, Stoffel K, Buell CR, Kozik A, Liu J, van der Knaap E, Francis D: Diversity in conserved genes in tomato. Bmc Genomics. 2007, 8:Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM: Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. Bmc Genomics. 2009, 10:Bioinformatics at COMAV. [ http://bioinf.comav.upv.es/ngs_backbone/index.html ]Broad institute. [ http://www.broadinstitute.org/igv ]Bioinformatics at COMAV. [ http://bioinf.comav.upv.es/ngs_backbone/install.html ]Github social coding. [ http://github.com/JoseBlanca/franklin ]Chou HH, Holmes MH: DNA sequence quality trimming and vector removal. Bioinformatics. 2001, 17 (12): 1093-1104. 10.1093/bioinformatics/17.12.1093.Picard. [ http://picard.sourceforge.net/index.shtml ]McKenna A, Hanna M, Banks E, Sivachenko A, Citulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research. 2010, 20: 1297-1303. 10.1101/gr.107524.110.Sol Genomics Network. [ ftp://ftp.solgenomics.net/ ]NCBI Genbank. [ http://www.ncbi.nlm.nih.gov/genbank/ ]Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT: Amplicon melting analysis with labeled primers: A closed-tube method for differentiating homozygotes and heterozygotes. Clinical Chemistry. 2003, 49 (3): 396-406. 10.1373/49.3.396
    corecore