23 research outputs found

    Angiotensin AT1 and AT2 receptors heteromer expression in microglia correlates with Parkinson's disease progression in the hemilesioned rat model of the disease

    Get PDF
    Background/Aims : The renin-angiotensin system (RAS) is altered in Parkinson's disease (PD), a disease due to substantia nigra neurodegeneration and whose dopamine-replacement therapy, using the precursor levodopa, leads to dyskinesias as the main side effect. Angiotensin AT 1 and AT 2 receptors, mainly known for their role in regulating water homeostasis and blood pressure and able to form heterodimers (AT 1/2 Hets), are present in the central nervous system. We assessed the functionality and expression of AT 1/2 Hets in Parkinson Disease (PD). Methods: Immunocytochemistry was used to analyze the colocalization between angiotensin receptors, bioluminescence resonance energy transfer was used to detect AT 1/2 Hets. Calcium and cAMP determination, MAPK activation and label-free assays were performed to characterize signaling. Proximity ligation assays was used to quantify receptor expression in microglial cells and brain striatal slices. Results: We confirmed that AT 1 and AT 2 receptors form AT 1/2 Hets that are expressed in cells of the central nervous system. AT 1/2 Hets are novel functional units with particular signaling properties. Importantly, the coactivation of the two receptors in the heteromer reduces the signaling output of angiotensin. Remarkably, AT 1/2 Hets that are expressed in both striatal neurons and microglia show a cross-potentiation, i.e. candesartan, the antagonist of AT 1 increases the effect of AT 2 receptor agonists. In addition, the level of expression in the unilateral 6-OH-dopamine lesion rat PD model increases upon disease progression and is maximal in dyskinetic animals. Conclusion: The results indicate that boosting the action of neuroprotective AT 2 receptors using an AT 1 receptor antagonist constitutes a promising therapeutic strategy in PD

    Functional complexes of Angiotensin-converting enzyme 2 and renin-angiotensin system receptors: expression in adult but not fetal lung tissue

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2) is a membrane peptidase and a componentof the renin-angiotensin system (RAS) that has been found in cells of all organs, including thelungs. While ACE2 has been identified as the receptor for severe acute respiratory syndrome (SARS)coronaviruses, the mechanism underlying cell entry remains unknown. Human immunodeficiencyvirus infects target cells via CXC chemokine receptor 4 (CXCR4)-mediated endocytosis. Furthermore,CXCR4 interacts with dipeptidyl peptidase-4 (CD26/DPPIV), an enzyme that cleaves CXCL12/SDF-1,which is the chemokine that activates this receptor. By analogy, we hypothesized that ACE2 mightalso be capable of interactions with RAS-associated G-protein coupled receptors. Using resonanceenergy transfer and cAMP and mitogen-activated protein kinase signaling assays, we found thathuman ACE2 interacts with RAS-related receptors, namely the angiotensin II type 1 receptor (AT1R),the angiotensin II type 2 receptor (AT2R), and the MAS1 oncogene receptor (MasR). Although theseinteractions led to various alterations of signal transduction, but, more importantly, ligand binding toAT1R resulted in the downregulation of ACE2 cell surface expression, while ligand binding to AT2R,but not to MasR, resulted in upregulation of ACE2 cell surface expression. Proximity ligation assaysperformed in situ revealed macromolecular complexes containing ACE2 and AT1R, AT2R or MasR inadult but not fetal mouse lung tissue. These findings highlight the relevance of RAS in SARS-CoV-2infection and the role of ACE2-containing complexes as potential therapeutic targets

    Angiotensin AT 1 and AT 2 receptor heteromer expression in the hemilesioned rat model of Parkinson's disease that increases with levodopa-induced dyskinesia

    Get PDF
    Background/aims: The renin-angiotensin system (RAS) is altered in Parkinson's disease (PD), a disease due to substantia nigra neurodegeneration and whose dopamine-replacement therapy, using the precursor levodopa, leads to dyskinesias as the main side effect. Angiotensin AT1 and AT2 receptors, mainly known for their role in regulating water homeostasis and blood pressure and able to form heterodimers (AT1/2Hets), are present in the central nervous system. We assessed the functionality and expression of AT1/2Hets in Parkinson disease (PD). Methods: Immunocytochemistry was used to analyze the colocalization between angiotensin receptors; bioluminescence resonance energy transfer was used to detect AT1/2Hets. Calcium and cAMP determination, MAPK activation, and label-free assays were performed to characterize signaling in homologous and heterologous systems. Proximity ligation assays were used to quantify receptor expression in mouse primary cultures and in rat striatal sections. Results: We confirmed that AT1 and AT2 receptors form AT1/2Hets that are expressed in cells of the central nervous system. AT1/2Hets are novel functional units with particular signaling properties. Importantly, the coactivation of the two receptors in the heteromer reduces the signaling output of angiotensin. Remarkably, AT1/2Hets that are expressed in both striatal neurons and microglia make possible that candesartan, the antagonist of AT1, increases the effect of AT2 receptor agonists. In addition, the level of striatal expression increased in the unilateral 6-OH-dopamine lesioned rat PD model and was markedly higher in parkinsonian-like animals that did not become dyskinetic upon levodopa chronic administration if compared with expression in those that became dyskinetic. Conclusion: The results indicate that boosting the action of neuroprotective AT2 receptors using an AT1 receptor antagonist constitutes a promising therapeutic strategy in PD. Keywords: Dyskinesia; G-protein-coupled receptor (GPCR); Heteromer; Levodopa; Neuroinflammation

    Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism

    Get PDF
    Abstract Although type 1 cannabinoid receptors (CB1- Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas the expression is markedly reduced in dyskinetic animals. Moreover, an in situ proximity ligation assay was used to qualitatively assess the presence of CB1Rs and CB2Rs, as well as CB1R–CB2R heteromers within basal ganglia output neurons in all animal groups (control, parkinsonian and dyskinetic macaques). A marked reduction in the number of CB1Rs, CB2Rs and CB1R–CB2R heteromers was found in dyskinetic animals, mimicking the observed reduction in CB1R and CB2R mRNA expression levels. The fact that chronic levodopa treatment disrupted CB1R–CB2R heteromeric complexes should be taken into consideration when designing new drugs acting on cannabinoid receptor heteromers

    Prostaglandin EP2 Receptors Mediate Mesenchymal Stromal Cell-Neuroprotective Effects on Dopaminergic Neurons

    No full text
    Mesenchymal stromal cells (MSCs) have been shown to have useful properties for cell therapy and have been proposed for treatment of neurodegenerative diseases, including Parkinson's disease. However, the mechanisms involved in recovering dopaminergic neurons are not clear. The present study aims to evaluate the pathways and molecules involved in the neuroprotective effect of MSCs. We analyzed the viability of dopaminergic cells from different sources in response to conditioned medium derived from bone marrow MSC (MSC-CM). MSC-CM increased the viability of dopaminergic cells of rat and human origins, having both neuroprotective and neurorescue activities against effects of dopaminergic neurotoxin 6-hydroxydopamine. We found that lipid removal, inhibition of the prostaglandin E2 receptor 2 (EP2), and its signaling pathway were able to block the effects of MSC-CM on a pure population of dopaminergic neurons. Moreover, in primary mesencephalic cultures and hiPSC-derived neurons, inhibition of EP2 signaling caused a reduction in the number of dopaminergic neurons obtained in culture. Taken together, our results demonstrate for the first time the involvement of prostaglandin signaling from MSC in dopaminergic neuron survival through EP2 receptors, and suggest new approaches for treatment of Parkinson's disease.Grant sponsors of this work are Spanish Ministry of Economy and Competitiveness (BFU2015-70523), Spanish Ministry of Health (RD12/0019/0020, RD16/0011/0016, and CIBERNED), Galician Government (XUGA and Centro singular de investigaciĂłn de Galicia acreditaciĂłn 2016-2019, ED431G/05), and European Regional Development Fund (ERDF).Peer reviewe

    Aging-related dysregulation of dopamine and angiotensin receptor interaction

    No full text
    It is not known whether the aging-related decrease in dopaminergic function leads to the aging-related higher vulnerability of dopaminergic neurons and risk for Parkinson's disease. The renin-angiotensin system (RAS) plays a major role in the inflammatory response, neuronal oxidative stress, and dopaminergic vulnerability via type 1 (AT1) receptors. In the present study, we observed a counterregulatory interaction between dopamine and angiotensin receptors. We observed overexpression of AT1 receptors in the striatum and substantia nigra of young adult dopamine D1 and D2 receptor-deficient mice and young dopamine-depleted rats, together with compensatory overexpression of AT2 receptors or compensatory downregulation of angiotensinogen and/or angiotensin. In aged rats, we observed downregulation of dopamine and dopamine receptors and overexpression of AT1 receptors in aged rats, without compensatory changes observed in young animals. L-Dopa therapy inhibited RAS overactivity in young dopamine-depleted rats, but was ineffective in aged rats. The results suggest that dopamine may play an important role in modulating oxidative stress and inflammation in the substantia nigra and striatum via the RAS, which is impaired by aging. © 2014 Elsevier Inc.Peer Reviewe

    Is Carotid Body Infection Responsible for Silent Hypoxemia in COVID-19 Patients?

    Get PDF
    The pathogenic mechanisms underlying the symptomatology of coronavirus disease 2019 (COVID-19) patients are not well understood. An atypical and bewildering clinical manifestation found in many COVID-19 patients is that they exhibit severe hypoxemia, with arterial levels of oxygen (O2) tension even below 50 mmHg, without clear signs of distress (dyspnea) or significant acceleration of breathing.1,2 Under these conditions, patients with COVID-19 pneumonia may decompensate and as a consequence undergo a rapid deterioration of their clinical state that can eventually lead to death. The pathophysiology of this so-called “silent hypoxemia”3 or “happy hypoxia” is unknown.1,3,4 A decline in arterial O2 tension is normally detected by O2-sensing cells in the carotid body (CB), the main arterial chemoreceptor, which rapidly activates sensory fibers impinging on neurons in the brainstem to induce compensatory hyperventilation and increased heart rate. In this way, both O2 uptake and its distribution to the tissues are enhanced. Bilateral removal of the CB in humans leaves individuals unaware of hypoxemia, with complete abolition of the hypoxic ventilatory response.5 Therefore, inhibition of CB responsiveness to hypoxia could be a plausible explanation for the impaired respiratory drive and reduced dyspnea that characterizes the “silent hypoxemia” observed in COVID-19 patientsExperimental work in the authors’ laboratories is supported by the Spanish Ministries of Science and Health (grants PID2019-106410RBI00, PID2019-105995RB-I00, and Red Tema®tica de Investigacio®n Cooperativa “Terapia Celular” RD16/0011/0025) and the European Research Council (ERC Advanced Grant PRJ201502629)Peer reviewe

    Usefulness of identifying G-protein-coupled receptor dimers for diagnosis and therapy of neurodegenerative diseases and of gliomas

    No full text
    Immunochemical detection of G-protein-coupled receptors (GPCRs) in cells and tissues was a technical challenge for years. After the discovery of formation of GPCR dimers/trimers/tetramers in transfected cells, a most recent challenge has been to confirm receptor-receptor interactions in natural sources. The occurrence of dimers or higher order oligomers is important from a therapeutic point of view, mainly because their physiology/pharmacology is different from those of individual receptors. On the one hand, pathophysiological factors need to count more on GPCR dimers than on individual receptors. On the other hand, the expression of dimers, trimers, etc. may change in pathological conditions and/or along the course of a disease. This review will focus on G-protein-coupled receptor dimers, on how to detect them by novel histological techniques and on how the detection may be used in diagnosis and therapy of ailments of the central nervous system, for instance in neurodegenerative diseases and gliomas

    Usefulness of identifying G-protein-coupled receptor dimers for diagnosis and therapy of neurodegenerative diseases and of gliomas

    No full text
    Immunochemical detection of G-protein-coupled receptors (GPCRs) in cells and tissues was a technical challenge for years. After the discovery of formation of GPCR dimers/trimers/tetramers in transfected cells, a most recent challenge has been to confirm receptor-receptor interactions in natural sources. The occurrence of dimers or higher order oligomers is important from a therapeutic point of view, mainly because their physiology/pharmacology is different from those of individual receptors. On the one hand, pathophysiological factors need to count more on GPCR dimers than on individual receptors. On the other hand, the expression of dimers, trimers, etc. may change in pathological conditions and/or along the course of a disease. This review will focus on G-protein-coupled receptor dimers, on how to detect them by novel histological techniques and on how the detection may be used in diagnosis and therapy of ailments of the central nervous system, for instance in neurodegenerative diseases and gliomas

    Unmasking adenosine 2A receptors (A2ARs) in monkey basal ganglia output neurons using cholera toxin subunit B (CTB)

    No full text
    The A(2A)R has become a therapeutic target in Parkinson disease due to its functional role in the striatum, capable of modulating dopaminergic neurotransmission in the basal ganglia. No conclusive evidence, however, has been provided to demonstrate the existence of A(2A)Rs in the output nuclei of the basal ganglia: the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr). Using immunohistochemistry and in situ hybridization techniques we have confirmed the presence of A(2A)Rs in both the striatum (medium spiny and cholinergic neurons) and the external segment of the globus pallidus (GPe), in the monkey. The antibody routinely used to label A(2A)Rs failed to detect A(2A)R-positive neurons in the GPi and SNr, however, in situ hybridization showed that A(2A)R mRNA transcripts were indeed present in both these nuclei. Surprisingly, by labeling pallidothalamic and nigrothalamic projection neurons originating in the GPi and SNr with the neuronal retrograde tracer cholera toxin subunit B (CTB), the receptor protein was unmasked and detectable using the antibody. This unmasking of the protein was specific to CTB and not an artifact of the tracer. We have shown unequivocally that the A(2A)R is present in the output nuclei of the primate basal ganglia, however, to be able to detect the receptor immunohistochemically, unmasking the protein with CTB was necessary. The presence of A(2A)Rs in the GPi and SNr suggests that these output nuclei could be targeted therapeutically in Parkinson disease to restore abnormal activity in the basal ganglia
    corecore