178 research outputs found

    Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging

    Get PDF
    Recent studies highlight that spatial interpolation techniques of point data can be effectively applied to the problem of regionalization of hydrometric information. This study compares two innovative interpolation techniques for the prediction of low-flows in ungauged basins. The first one, named Physiographical-Space Based Interpolation (PSBI), performs the spatial interpolation of the desired streamflow index (e.g., annual streamflow, low-flow index, flood quantile, etc.) in the space of catchment descriptors. The second technique, named Topological kriging or Top-kriging, predicts the variable of interest along river networks taking both the area and nested nature of catchments into account. PSBI and Top-kriging are applied for the regionalization of <i>Q</i><sub>355</sub> (i.e., a low-flow index that indicates the streamflow that is equalled or exceeded 355 days in a year, on average) over a broad geographical region in central Italy, which contains 51 gauged catchments. The two techniques are cross-validated through a leave-one-out procedure at all available gauges and applied to a subregion to produce a continuous estimation of <i>Q</i><sub>355</sub> along the river network extracted from a 90m elevation model. The results of the study show that Top-kriging and PSBI present complementary features. Top-kriging outperforms PSBI at larger river branches while PSBI outperforms Top-kriging for headwater catchments. Overall, they have comparable performances (Nash-Sutcliffe efficiencies in cross-validation of 0.89 and 0.83, respectively). Both techniques provide plausible and accurate predictions of <i>Q</i><sub>355</sub> in ungauged basins and represent promising opportunities for regionalization of low-flows

    A three-pillar approach to assessing climate impacts on low flows

    Get PDF
    The objective of this paper is to present a framework for assessing climate impacts on future low flows that combines different sources of information, termed pillars. To illustrate the framework three pillars are chosen: (a) extrapolation of observed low-flow trends into the future, (b) rainfall–runoff projections based on climate scenarios and (c) extrapolation of changing stochastic rainfall characteristics into the future combined with rainfall–runoff modelling. Alternative pillars could be included in the overall framework. The three pillars are combined by expert judgement based on a synoptic view of data, model outputs and process reasoning. The consistency/inconsistency between the pillars is considered an indicator of the certainty/uncertainty of the projections. The viability of the framework is illustrated for four example catchments from Austria that represent typical climate conditions in central Europe. In the Alpine region where winter low flows dominate, trend projections and climate scenarios yield consistently increasing low flows, although of different magnitudes. In the region north of the Alps, consistently small changes are projected by all methods. In the regions in the south and south-east, more pronounced and mostly decreasing trends are projected but there is disagreement in the magnitudes of the projected changes. The process reasons for the consistencies/inconsistencies are discussed. For an Alpine region such as Austria the key to understanding low flows is whether they are controlled by freezing and snowmelt processes, or by the summer moisture deficit associated with evaporation. It is argued that the three-pillar approach offers a systematic framework of combining different sources of information aimed at more robust projections than that obtained from each pillar alone

    Uncertainty contributions to low-flow projections in Austria

    Get PDF
    The main objective of the paper is to understand the contributions to the uncertainty in low-flow projections resulting from hydrological model uncertainty and climate projection uncertainty. Model uncertainty is quantified by different parameterisations of a conceptual semi-distributed hydrologic model (TUWmodel) using 11 objective functions in three different decades (1976–1986, 1987–1997, 1998–2008), which allows for disentangling the effect of the objective function-related uncertainty and temporal stability of model parameters. Climate projection uncertainty is quantified by four future climate scenarios (ECHAM5-A1B, A2, B1 and HADCM3-A1B) using a delta change approach. The approach is tested for 262 basins in Austria. The results indicate that the seasonality of the low-flow regime is an important factor affecting the performance of model calibration in the reference period and the uncertainty of Q95 low-flow projections in the future period. In Austria, the range of simulated Q95 in the reference period is larger in basins with a summer low-flow regime than in basins with a winter low-flow regime. The accuracy of simulated Q95 may result in a range of up to 60 % depending on the decade used for calibration. The low-flow projections of Q95 show an increase of low flows in the Alps, typically in the range of 10–30 % and a decrease in the south-eastern part of Austria mostly in the range −5 to −20 % for the climate change projected for the future period 2021–2050, relative the reference period 1978–2007. The change in seasonality varies between scenarios, but there is a tendency for earlier low flows in the northern Alps and later low flows in eastern Austria. The total uncertainty of Q95 projections is the largest in basins with a winter low-flow regime and, in some basins the range of Q95 projections exceeds 60 %. In basins with summer low flows, the total uncertainty is mostly less than 20 %. The ANOVA assessment of the relative contribution of the three main variance components (i.e. climate scenario, decade used for model calibration and calibration variant representing different objective function) to the low-flow projection uncertainty shows that in basins with summer low flows climate scenarios contribute more than 75 % to the total projection uncertainty. In basins with a winter low-flow regime, the median contribution of climate scenario, decade and objective function is 29, 13 and 13 %, respectively. The implications of the uncertainties identified in this paper for water resource management are discussed

    Uncertainty contributions to low-flow projections in Austria

    Get PDF
    The main objective of the paper is to understand the contributions to the uncertainty in low-flow projections resulting from hydrological model uncertainty and climate projection uncertainty. Model uncertainty is quantified by different parameterisations of a conceptual semi-distributed hydrologic model (TUWmodel) using 11 objective functions in three different decades (1976&ndash;1986, 1987&ndash;1997, 1998&ndash;2008), which allows for disentangling the effect of the objective function-related uncertainty and temporal stability of model parameters. Climate projection uncertainty is quantified by four future climate scenarios (ECHAM5-A1B, A2, B1 and HADCM3-A1B) using a delta change approach. The approach is tested for 262 basins in Austria. <br><br> The results indicate that the seasonality of the low-flow regime is an important factor affecting the performance of model calibration in the reference period and the uncertainty of <i>Q</i><sub>95</sub> low-flow projections in the future period. In Austria, the range of simulated <i>Q</i><sub>95</sub> in the reference period is larger in basins with a summer low-flow regime than in basins with a winter low-flow regime. The accuracy of simulated <i>Q</i><sub>95</sub> may result in a range of up to 60 % depending on the decade used for calibration. <br><br> The low-flow projections of Q<sub>95</sub> show an increase of low flows in the Alps, typically in the range of 10–30 % and a decrease in the south-eastern part of Austria mostly in the range &minus;5 to &minus;20 % for the climate change projected for the future period 2021&ndash;2050, relative the reference period 1978&ndash;2007. The change in seasonality varies between scenarios, but there is a tendency for earlier low flows in the northern Alps and later low flows in eastern Austria. The total uncertainty of <i>Q</i><sub>95</sub> projections is the largest in basins with a winter low-flow regime and, in some basins the range of <i>Q</i><sub>95</sub> projections exceeds 60 %. In basins with summer low flows, the total uncertainty is mostly less than 20 %. The ANOVA assessment of the relative contribution of the three main variance components (i.e. climate scenario, decade used for model calibration and calibration variant representing different objective function) to the low-flow projection uncertainty shows that in basins with summer low flows climate scenarios contribute more than 75 % to the total projection uncertainty. In basins with a winter low-flow regime, the median contribution of climate scenario, decade and objective function is 29, 13 and 13 %, respectively. The implications of the uncertainties identified in this paper for water resource management are discussed

    Flächenhafte Bestimmung von Hochwasserspenden

    Get PDF
    Der Projektabschlussbericht befasst sich mit der Bestimmung von Hochwasserscheitelabflüssen mit zugeordneter Jährlichkeit HQT an unbeobachteten Gewässerquerschnitten in Sachsen. Grundlage sind beobachtete Hochwasserscheitel an 113 Pegeln und hydrologische Überlegungen zur räumlichen Variabilität von Hochwassern. Zur Anwendung kommen Index-Flood-Verfahren, Top-Kriging und Georegression. Die Bewertung der Ergebnisse erfolgt mit einem Jack-Knife-Vergleich für die durch Pegel beobachteten Einzugsgebiete. Zur Bestimmung von Hochwasserspenden wird für Sachsen eine Kombination aller drei Verfahren empfohlen. Die Ergebnisse sollen Planern und Wasserbehörden für die Bemessung wasserbaulicher Anlagen zur Verfügung stehen

    Apparent contradiction in the projected climatic water balance for Austria: wetter conditions on average versus higher probability of meteorological droughts

    Get PDF
    In this paper future changes of surface water availability in Austria are investigated. We use an ensemble of downscaled and bias-corrected regional climate model simulations of the EURO-CORDEX initiative under moderate mitigation (RCP4.5) and Paris Agreement (RCP2.6) emission scenarios. The climatic water balance and its components (rainfall, snow melt, glacier melt and atmospheric evaporative demand) are used as indicators of surface water availability, and we focus on different altitudinal classes (lowland, mountainous and high alpine) to depict a variety of processes in complex terrain. Apart from analysing the mean changes of these components, we also pursue a hazard risk approach by estimating future changes in return periods of meteorological drought events of a given magnitude as observed in the reference period. The results show, in general, wetter conditions over the course of the 21st century over Austria on an annual basis compared to the reference period 1981–2010 (e.g. RCP4.5 +107 mm, RCP2.6 +63 mm for the period 2071–2100). Considering seasonal differences, winter and spring are getting wetter due to an increase in precipitation and a higher fraction of rainfall as a consequence of rising temperatures. In summer only little changes in the mean of the climatic water balance conditions are visible across the model ensemble (e.g. RCP4.5 ±0 mm, RCP2.6 −2 mm for the period 2071–2100). On the contrary, by analysing changes in return periods of drought events, an increasing risk of moderate and extreme drought events during summer is apparent, a signal emerging within the climate system along with increasing warming.</p

    The European 2015 drought from a hydrological perspective

    Get PDF
    In 2015 large parts of Europe were affected by drought. In this paper, we analyze the hydrological footprint (dynamic development over space and time) of the drought of 2015 in terms of both severity (magnitude) and spatial extent and compare it to the extreme drought of 2003. Analyses are based on a range of low flow and hydrological drought indices derived for about 800 streamflow records across Europe, collected in a community effort based on a common protocol. We compare the hydrological footprints of both events with the meteorological footprints, in order to learn from similarities and differences of both perspectives and to draw conclusions for drought management. The region affected by hydrological drought in 2015 differed somewhat from the drought of 2003, with its center located more towards eastern Europe. In terms of low flow magnitude, a region surrounding the Czech Republic was the most affected, with summer low flows that exhibited return intervals of 100 years and more. In terms of deficit volumes, the geographical center of the event was in southern Germany, where the drought lasted a particularly long time. A detailed spatial and temporal assessment of the 2015 event showed that the particular behavior in these regions was partly a result of diverging wetness preconditions in the studied catchments. Extreme droughts emerged where preconditions were particularly dry. In regions with wet preconditions, low flow events developed later and tended to be less severe. For both the 2003 and 2015 events, the onset of the hydrological drought was well correlated with the lowest flow recorded during the event (low flow magnitude), pointing towards a potential for early warning of the severity of streamflow drought. Time series of monthly drought indices (both streamflow- and climate-based indices) showed that meteorological and hydrological events developed differently in space and time, both in terms of extent and severity (magnitude). These results emphasize that drought is a hazard which leaves different footprints on the various components of the water cycle at different spatial and temporal scales. The difference in the dynamic development of meteorological and hydrological drought also implies that impacts on various water-use sectors and river ecology cannot be informed by climate indices alone. Thus, an assessment of drought impacts on water resources requires hydrological data in addition to drought indices based solely on climate data. The transboundary scale of the event also suggests that additional efforts need to be undertaken to make timely pan-European hydrological assessments more operational in the future

    Combining teaching and research: a BIP on geophysical and archaeological prospection of North Frisian medieval settlement patterns

    Get PDF
    We performed a research-oriented EU Erasmus+ Blended Intensive Program (BIP) with participants from four countries focused on North Frisian terp settlements from Roman Iron Age and medieval times. We show that the complex terp structure and environment can be efficiently prospected using combined magnetic and EMI mapping, and seismic and geoelectric profiling and drilling. We found evidence of multiple terp phases and a harbor at the Roman Iron Age terp of Tofting. In contrast, the medieval terp of Stolthusen is more simply constructed, probably uni-phase. The BIP proved to be a suitable tool for high-level hands-on education adding value to the research conducted in on-going projects

    Climate driven trends in historical extreme low streamflows on four continents

    Get PDF
    Understanding temporal trends in low streamflows is important for water management and ecosystems. This work focuses on trends in the occurrence rate of extreme low-flow events (5- to 100-year return periods) for pooled groups of stations. We use data from 1,184 minimally altered catchments in Europe, North and South America, and Australia to discern historical climate-driven trends in extreme low flows (1976–2015 and 1946–2015). The understanding of low streamflows is complicated by different hydrological regimes in cold, transitional, and warm regions. We use a novel classification to define low-flow regimes using air temperature and monthly low-flow frequency. Trends in the annual occurrence rate of extreme low-flow events (proportion of pooled stations each year) were assessed for each regime. Most regimes on multiple continents did not have significant (p < 0.05) trends in the occurrence rate of extreme low streamflows from 1976 to 2015; however, occurrence rates for the cold-season low-flow regime in North America were found to be significantly decreasing for low return-period events. In contrast, there were statistically significant increases for this period in warm regions of NA which were associated with the variation in the Pacific Decadal Oscillation. Significant decreases in extreme low-flow occurrence rates were dominant from 1946 to 2015 in Europe and NA for both cold- and warm-season low-flow regimes; there were also some non-significant trends. The difference in the results between the shorter (40-year) and longer (70-year) records and between low-flow regimes highlights the complexities of low-flow response to changing climatic conditions
    • …
    corecore