65 research outputs found

    Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods

    Get PDF
    Gas-exchange structures are critical for acquiring oxygen, but they also represent portals for pathogen entry. Local mucosal immunoglobulin responses against pathogens in specialized respiratory organs have only been described in tetrapods. Since fish gills are considered a mucosal surface, we hypothesized that a dedicated mucosal immunoglobulin response would be generated within its mucosa on microbial exposure. Supporting this hypothesis, here we demonstrate that following pathogen exposure, IgT(+) B cells proliferate and generate pathogen-specific IgT within the gills of fish, thus providing the first example of locally induced immunoglobulin in the mucosa of a cold-blooded species. Moreover, we demonstrate that gill microbiota is predominantly coated with IgT, thus providing previously unappreciated evidence that the microbiota present at a respiratory surface of a vertebrate is recognized by a mucosal immunoglobulin. Our findings indicate that respiratory surfaces and mucosal immunoglobulins are part of an ancient association that predates the emergence of tetrapods

    Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout

    Get PDF
    Viral replication and shedding are key components of transmission and fitness, the kinetics of which are heavily dependent on virus, host, and environmental factors. To date, no studies have quantified the shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss), or how they are associated with replication, making it difficult to ascertain the transmission dynamics of this pathogen of high agricultural and conservation importance. Here, the replication and shedding kinetics of two M genogroup IHNV genotypes were examined in their naturally co-evolved rainbow trout host. Within host virus replication began rapidly, approaching maximum values by day 3 post-infection, after which viral load was maintained or gradually dropped through day 7. Host innate immune response measured as stimulation of Mx-1 gene expression generally followed within host viral loads. Shedding also began very quickly and peaked within 2 days, defining a generally uniform early peak period of shedding from 1 to 4 days after exposure to virus. This was followed by a post-peak period where shedding declined, such that the majority of fish were no longer shedding by day 12 post-infection. Despite similar kinetics, the average shedding rate over the course of infection was significantly lower in mixed compared to single genotype infections, suggesting a competition effect, however, this did not significantly impact the total amount of virus shed. The data also indicated that the duration of shedding, rather than peak amount of virus shed, was correlated with fish mortality. Generally, the majority of virus produced during infection appeared to be shed into the environment rather than maintained in the host, although there was more retention of within host virus during the post-peak period. Viral virulence was correlated with shedding, such that the more virulent of the two genotypes shed more total virus. This fundamental understanding of IHNV shedding kinetics and variation at the individual fish level could assist with management decisions about how to respond to disease outbreaks when they occur. (C) 2016 Elsevier B.V. All rights reserved

    Differential characterization of emerging skin diseases of rainbow trout - a standardized approach to capturing disease characteristics and development of case definitions

    Get PDF
    Farmed and wild salmonids are affected by a variety of skin conditions, some of which have significant economic and welfare implications. In many cases, the causes are not well understood, and one example is cold water strawberry disease of rainbow trout, also called red mark syndrome, which has been recorded in the UK since 2003. To date, there are no internationally agreed methods for describing these conditions, which has caused confusion for farmers and health professionals, who are often unclear as to whether they are dealing with a new or a previously described condition. This has resulted, inevitably, in delays to both accurate diagnosis and effective treatment regimes. Here, we provide a standardized methodology for the description of skin conditions of rainbow trout of uncertain aetiology. We demonstrate how the approach can be used to develop case definitions, using coldwater strawberry disease as an example
    corecore