100 research outputs found
Exploring the Connection Between Star Formation and AGN Activity in the Local Universe
We study a combined sample of 264 star-forming, 51 composite, and 73 active
galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from
the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic
diagnostics that probe the amount of star formation and relative energetic
contributions from star formation and an active galactic nucleus (AGN). Overall
we find good agreement between optical and mid-IR diagnostics.
Misclassifications of galaxies based on the SDSS spectra are rare despite the
presence of dust obscuration. The luminosity of the [NeII] 12.8 \mu m
emission-line is well correlated with the star formation rate (SFR) measured
from the SDSS spectra, and this holds for the star forming, composite, and
AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 \mu m emission
relative to star forming and composite systems. We find good qualitative
agreement between various parameters that probe the relative contributions of
the AGN and star formation, including: the mid-IR spectral slope, the ratio of
the [NeV] 14.3 \mu m to [NeII] \mu m 12.8 fluxes, the equivalent widths of the
7.7, 11.3, and 17 PAH features, and the optical "D" parameter which
measures the distance a source lies from the locus of star forming galaxies in
the optical BPT emission-line diagnostic diagram. We also consider the behavior
of the three individual PAH features by examining how their flux ratios depend
upon the degree of AGN-dominance. We find that the PAH 11.3 \mu m feature is
significantly suppressed in the most AGN-dominated systems.Comment: in review for ApJ. Updated to address referee's comments. 51 pages,
15 Figures, 13 Table
On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3
Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss
Evidence for Black Hole Growth in Local Analogs to Lyman Break Galaxies
We have used XMM-Newton to observe six Lyman Break Analogs (LBAs): members of
the rare population of local galaxies that have properties that are very
similar to distant Lyman Break Galaxies. Our six targets were specifically
selected because they have optical emission-line properties that are
intermediate between starbursts and Type 2 (obscured) AGN. Our new X-ray data
provide an important diagnostic of the presence of an AGN. We find X-ray
luminosities of order 10^{42} erg/s and ratios of X-ray to far-IR luminosities
that are higher than values in pure starburst galaxies by factors ranging from
~ 3 to 30. This strongly suggests the presence of an AGN in at least some of
the galaxies. The ratios of the luminosities of the hard (2-10 keV) X-ray to [O
III]\lambda 5007 emission-line are low by about an order-of-magnitude compared
to Type 1 AGN, but are consistent with the broad range seen in Type 2 AGN.
Either the AGN hard X-rays are significantly obscured or the [O III] emission
is dominated by the starburst. We searched for an iron emission line at ~ 6.4
keV, which is a key feature of obscured AGN, but only detected emission at the
~ 2\sigma level. Finally, we find that the ratios of the mid-infrared (24\mu m)
continuum to [O III]\lambda 5007 luminosities in these LBAs are higher than the
values for Type 2 AGN by an average of 0.8 dex. Combining all these clues, we
conclude that an AGN is likely to be present, but that the bolometric
luminosity is produced primarily by an intense starburst. If these black holes
are radiating at the Eddington limit, their masses would lie in the range of
10^5 to 10^6 M_{sun}. These objects may offer ideal local laboratories to
investigate the processes by which black holes grew in the early universe.Comment: Accepted for publication in Ap
Disentangling AGN and Star Formation in Soft X-rays
We have explored the interplay of star formation and AGN activity in soft
X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a
combination of low resolution CCD spectra from Chandra and XMM-Newton, we
modeled the soft emission of 34 Sy2s using power law and thermal models. For
the 11 sources with high signal-to-noise Chandra imaging of the diffuse host
galaxy emission, we estimate the luminosity due to star formation by removing
the AGN, fitting the residual emission. The AGN and star formation
contributions to the soft X-ray luminosity (i.e. L and L)
for the remaining 24 Sy2s were estimated from the power law and thermal
luminosities derived from spectral fitting. These luminosities were scaled
based on a template derived from XSINGS analysis of normal star forming
galaxies. To account for errors in the luminosities derived from spectral
fitting and the spread in the scaling factor, we estimated L and
L from Monte Carlo simulations. These simulated luminosities agree
with L and L derived from Chandra imaging analysis within a
3\sigma\ confidence level. Using the infrared [NeII]12.8\mu m and [OIV]26\mu m
lines as a proxy of star formation and AGN activity, respectively, we
independently disentangle the contributions of these two processes to the total
soft X-ray emission. This decomposition generally agrees with L and
L at the 3\sigma\ level. In the absence of resolvable nuclear
emission, our decomposition method provides a reasonable estimate of emission
due to star formation in galaxies hosting type 2 AGN.Comment: accepted for publication in ApJ; 34 pages, 9 tables, 4 figure
Exploring the Connection Between Star Formation and AGN Activity in the Local Universe
We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems
Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968
We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z
= 0.00986) Seyfert 2 galaxy. We discover extended (1 kpc) X-ray emission
in the soft band (0.5 - 2 keV) that is neither coincident with the narrow line
region nor the extended radio emission. Based on spectral modeling, it is
linked to on-going star formation (2.6-4 M_{\sun} yr). The soft
emission at circumnuclear scales (inner 400 pc) originates from hot gas,
with kT 0.7 keV, while the most extended thermal emission is cooler (kT
0.3 keV). We refine previous measurements of the extreme Fe K
equivalent width in this source (EW = 2.5 keV), which suggests
the central engine is completely embedded within Compton-thick levels of
obscuration. Using physically motivated models fit to the Chandra spectrum, we
derive a Compton-thick column density (
cm) and an intrinsic hard (2-10 keV) X-ray luminosity of
3-8 erg s (depending on the presumed geometry of
the obscurer), which is over two orders of magnitude larger than that observed.
The large Fe K EW suggests a spherical covering geometry, which could
be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other
active galaxies that exhibit extreme Fe K EWs (i.e., 2 keV) in that
they also contain ongoing star formation. This work supports the idea that gas
associated with nuclear star formation may increase the covering factor of the
enshrouding gas and play a role in obscuring AGN.Comment: 11 pages, 8 figures, 4 tables. Accepted for publication in Ap
Probing the Nature of the Vela X Cocoon
Vela X is a pulsar wind nebula (PWN) associated with the active pulsar
B0833-45 and contained within the Vela supernova remnant (SNR). A collimated
X-ray filament ("cocoon") extends south-southwest from the pulsar to the center
of Vela X. VLA observations uncovered radio emission coincident with the
eastern edge of the cocoon and H.E.S.S. has detected TeV -ray emission
from this region as well. Using XMM-\textit{Newton} archival data, covering the
southern portion of this feature, we analyze the X-ray properties of the
cocoon. The X-ray data are best fit by an absorbed nonequilibrium plasma model
with a powerlaw component. Our analysis of the thermal emission shows enhanced
abundances of O, Ne, and Mg within the cocoon, indicating the presence of
ejecta-rich material from the propagation of the SNR reverse shock, consistent
with Vela X being a disrupted PWN. We investigate the physical processes that
excite the electrons in the PWN to emit in the radio, X-ray and -ray
bands. The radio and non-thermal X-ray emission can be explained by synchrotron
emission. We model the -ray emission by Inverse Compton scattering of
electrons off of cosmic microwave background (CMB) photons. We use a
3-component broken power law to model the synchrotron emission, finding an
intrinsic break in the electron spectrum at keV and a
cooling break at 5.5 keV. This cooling break along with
a magnetic field strength of 5 G indicate that the synchrotron
break occurs at 1 keV.Comment: accepted for publication to ApJ
X-ray Properties of the GigaHertz-Peaked and Compact Steep Spectrum Sources
We present {\it Chandra} X-ray Observatory observations of Giga-Hertz Peaked
Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources. The {\it
Chandra} sample contains 13 quasars and 3 galaxies with measured 2-10 keV X-ray
luminosity within erg s. We detect all of the
sources, five of which are observed in X-ray for the first time. We study the
X-ray spectral properties of the sample. The measured absorption columns in the
quasars are different than those in the galaxies in the sense that the quasars
show no absorption (with limits ) while the galaxies
have large absorption columns () consistent with
previous findings. The median photon index of the sources with high S/N is
and it is larger than the typical index of radio loud
quasars. The arcsec resolution of {\it Chandra} telescope allows us to
investigate X-ray extended emission, and look for diffuse components and X-ray
jets. We found X-ray jets in two quasars (PKS 1127-145, B2 0738+32), an X-ray
cluster surrounding a CSS quasar (z=1.1, 3C 186), detected a possible binary
structure in 0941-080 galaxy and an extended diffuse emission in galaxy PKS B2
1345+12. We discuss our results in the context of X-ray emission processes and
radio source evolution. We conclude that the X-ray emission in these sources is
most likely unrelated to a relativistic jet, while the sources' radio-loudness
may suggest a high radiative efficiency of the jet power in these sources.Comment: 15 pages, to be published in Ap
- …