617 research outputs found

    Direct thrust measurement of a permanent magnet helicon double layer thruster

    No full text
    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure

    Agricultural Land Use Planning and Groundwater Quality

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75123/1/j.1468-2257.1983.tb00394.x.pd

    From Extractivism to Global Extractivism : The Evolution of an Organizing Concept

    Get PDF
    All the named authors were members of the Helsinki Research Working Group on Global Extractivisms and Alternatives, who jointly constructed this article. Equal authorship by all authors is recognised.Research on extractivism has rapidly proliferated, expanding into new empirical and conceptual spaces. We examine the origins, evolution, and conceptual expansion of the concept. Extractivism is useful to analyze resource extraction practices around the world. ‘Global Extractivism’ is a new conceptual tool for assessing global phenomena. We situate extractivism within an ensemble of concepts, and explore its relation to development, the state, and value. Extractivism as an organizing concept addresses many fields of research. Extractivism forms a complex of self-reinforcing practices, mentalities, and power differentials underwriting and rationalizing socio-ecologically destructive modes of organizing life-through subjugation, depletion, and non-reciprocity.Peer reviewe

    Enhanced control of the ionization rate in radio-frequency plasmas with structured electrodes via tailored voltage waveforms

    Get PDF
    International audienceRadio-frequency capacitively coupled plasmas that incorporate structured electrodes enable increases in the electron density within spatially localized regions through the hollow cathode effect (HCE). This enables enhanced control over the spatial profile of the plasma density, which is useful for several applications including materials processing, lighting and spacecraft propulsion. However, asymmetries in the powered and grounded electrode areas inherent to the hollow cathode geometry lead to the formation of a time averaged dc self-bias voltage at the powered electrode. This bias alters the energy and flux of secondary electrons leaving the surface of the cathode and consequentially can moderate the increased localized ionization afforded by the hollow cathode discharge. In this work, two-dimensional fluid-kinetic simulations are used to demonstrate control of the dc self-bias voltage in a dual-frequency driven (13.56, 27.12 MHz), hollow cathode enhanced, capacitively coupled argon plasma over the 66.6--200 Pa (0.5--1.5 Torr) pressure range. By varying the phase offset of the 27.12 MHz voltage waveform, the dc self-bias voltage varies by 10%--15% over an applied peak-to-peak voltage range of 600--1000 V, with lower voltages showing higher modulation. Resulting ionization rates due to secondary electrons within the hollow cathode cavity vary by a factor of 3 at constant voltage amplitude, demonstrating the ability to control plasma properties relevant for maintaining and enhancing the HCE

    Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Get PDF
    International audienceThe charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15--20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity

    Why Do States Develop Multi-tier Emigrant Policies? Evidence from Egypt

    Get PDF
    Why do states vary their policies towards their citizens abroad, and why are some emigrant groups treated preferentially to others? The literature on the politics of international migration has yet to explore this as a separate field of inquiry, assuming that states adopt a single policy that encourages, sustains or prevents emigration abroad. Yet, in the case of Egypt, the state developed a multi-tiered policy that distinctly favoured specific communities abroad over others. I hypothesise that policy differentiation is based upon the perceived utility of the emigrant group remaining abroad versus the utility of its return. This utility is determined by two factors: the sending state’s domestic political economy priorities and its foreign policy objectives

    Effect of gas properties on the dynamics of the electrical slope asymmetry effect in capacitive plasmas : comparison of Ar, H2 and CF4

    Get PDF
    Tailored voltage excitation waveforms provide an efficient control of the ion energy (through the electrical asymmetry effect) in capacitive plasmas by varying the 'amplitude' asymmetry of the waveform. In this work, the effect of a 'slope' asymmetry of the waveform is investigated by using sawtooth-like waveforms, through which the sheath dynamic can be manipulated. A remarkably different discharge dynamic is found for Ar, H2, and CF4 gases, which is explained by the different dominant electron heating mechanisms and plasma chemistries. In comparison to Argon we find that the electrical asymmetry can even be reversed by using an electronegative gas such as CF4. Phase resolved optical emission spectroscopy measurements, probing the spatiotemporal distribution of the excitation rate show excellent agreement with the results of particle-in-cell simulations, confirming the high degree of correlation between the excitation rates with the dominant heating mechanisms in the various gases. It is shown that, depending on the gas used, sawtooth-like voltage waveforms may cause a strong asymmetry

    Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Get PDF
    International audienceWe discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ?benchmark data? is necessary. Examples will be given regarding the studies of electron power absorption modes in O 2 , and CF 4 ?Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O 2 capacitively coupled plasmas

    Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF4

    Get PDF
    The power absorption dynamics of electrons and the electrical asymmetry effect in capacitive radio-frequency plasmas operated in CF4 and driven by tailored voltage waveforms are investigated experimentally in combination with kinetic simulations. The driving voltage waveforms are generated as a superposition of multiple consecutive harmonics of the fundamental frequency of 13.56 MHz. Peaks/valleys and sawtooth waveforms are used to study the effects of amplitude and slope asymmetries of the driving voltage waveform on the electron dynamics and the generation of a DC self-bias in an electronegative plasma at different pressures. Compared to electropositive discharges, we observe strongly different effects and unique power absorption dynamics. At high pressures and high electronegativities, the discharge is found to operate in the drift-ambipolar (DA) heating mode. A dominant excitation/ionization maximum is observed during sheath collapse at the edge of the sheath which collapses fastest. High negative-ion densities are observed inside this sheath region, while electrons are confined for part of the RF period in a potential well formed by the ambipolar electric field at this sheath edge and the collapsed (floating potential) sheath at the electrode. For specific driving voltage waveforms, the plasma becomes divided spatially into two different halves of strongly different electronegativity. This asymmetry can be reversed electrically by inverting the driving waveform. For sawtooth waveforms, the discharge asymmetry and the sign of the DC self-bias are found to reverse as the pressure is increased, due to a transition of the electron heating mode from the α-mode to the DA-mode. These effects are interpreted with the aid of the simulation results
    corecore