53 research outputs found

    Clinical examination, MRI and arthroscopy in meniscal and ligamentous knee Injuries – a prospective study

    Get PDF
    Data from 565 knee arthroscopies performed by two experienced knee surgeons between 2002 and 2005 for degenerative joint disorders, ligament injuries, loose body removals, lateral release of the patellar retinaculum, plica division, and adhesiolysis was prospectively collected. A subset of 109 patients from the above group who sequentially had clinical examination, MRI and arthroscopy for suspected meniscal and ligament injuries were considered for the present study and the data was reviewed. Patients with previous menisectomies, knee ligament repairs or reconstructions and knee arthroscopies were excluded from the study. Patients were categorised into three groups on objective clinical assessment: Those who were positive for either meniscal or cruciate ligament injury [group 1]; both meniscal and cruciate ligament injury [group 2] and those with highly suggestive symptoms and with negative clinical signs [group 3]. MRI was requested for confirmation of diagnosis and for additional information in all these patients. Two experienced radiologists reported MRI films. Clinical and MRI findings were compared with Arthroscopy as the gold standard. A thorough clinical examination performed by a skilled examiner more accurately correlated at Arthroscopy. MRI added no information in group 1 patients, valuable information in group 2 and was equivocal in group 3 patients. A negative MRI did not prevent an arthroscopy. In this study, specificity, positive and negative predictive values were more favourable for clinical examination though MRI was more sensitive for meniscal injuries. The use of MRI as a supplemental tool in the management of meniscal and ligament injuries should be highly individualised by an experienced surgeon

    Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with osteoarthritis, a detailed assessment of degenerative cartilage disease is important to recommend adequate treatment. Using a representative sample of patients, this study investigated whether MRI is reliable for a detailed cartilage assessment in patients with osteoarthritis of the knee.</p> <p>Methods</p> <p>In a cross sectional-study as a part of a retrospective case-control study, 36 patients (mean age 53.1 years) with clinically relevant osteoarthritis received standardized MRI (sag. T1-TSE, cor. STIR-TSE, trans. fat-suppressed PD-TSE, sag. fat-suppressed PD-TSE, Siemens Magnetom Avanto syngo MR B 15) on a 1.5 Tesla unit. Within a maximum of three months later, arthroscopic grading of the articular surfaces was performed. MRI grading by two blinded observers was compared to arthroscopic findings. Diagnostic values as well as intra- and inter-observer values were assessed.</p> <p>Results</p> <p>Inter-observer agreement between readers 1 and 2 was good (kappa = 0.65) within all compartments. Intra-observer agreement comparing MRI grading to arthroscopic grading showed moderate to good values for readers 1 and 2 (kappa = 0.50 and 0.62, respectively), the poorest being within the patellofemoral joint (kappa = 0.32 and 0.52). Sensitivities were relatively low at all grades, particularly for grade 3 cartilage lesions. A tendency to underestimate cartilage disorders on MR images was not noticed.</p> <p>Conclusions</p> <p>According to our results, the use of MRI for precise grading of the cartilage in osteoarthritis is limited. Even if the practical benefit of MRI in pretreatment diagnostics is unequivocal, a diagnostic arthroscopy is of outstanding value when a grading of the cartilage is crucial for a definitive decision regarding therapeutic options in patients with osteoarthritis.</p

    A new interdisciplinary treatment strategy versus usual medical care for the treatment of subacromial impingement syndrome: a randomized controlled trial

    Get PDF
    BACKGROUND: Subacromial impingement syndrome (SIS) is the most frequently recorded shoulder disorder. When conservative treatment of SIS fails, a subacromial decompression is warranted. However, the best moment of referral for surgery is not well defined. Both early and late referrals have disadvantages – unnecessary operations and smaller improvements in shoulder function, respectively. This paper describes the design of a new interdisciplinary treatment strategy for SIS (TRANSIT), which comprises rules to treat SIS in primary care and a well-defined moment of referral for surgery. METHODS/DESIGN: The effectiveness of an arthroscopic subacromial decompression versus usual medical care will be evaluated in a randomized controlled trial (RCT). Patients are eligible for inclusion when experiencing a recurrence of SIS within one year after a first episode of SIS which was successfully treated with a subacromial corticosteroid injection. After inclusion they will receive injection treatment again by their general practitioner. When, after this treatment, there is a second recurrence within a year post-injection, the participants will be randomized to either an arthroscopic subacromial decompression (intervention group) or continuation of usual medical care (control group). The latter will be performed by a general practitioner according to the Dutch National Guidelines for Shoulder Problems. At inclusion, at randomization and three, six and 12 months post-randomization an outcome assessment will take place. The primary outcome measure is the patient-reported Shoulder Disability Questionnaire. The secondary outcome measures include both disease-specific and generic measures, and an economic evaluation. Treatment effects will be compared for all measurement points by using a GLM repeated measures analyses. DISCUSSION: The rationale and design of an RCT comparing arthroscopic subacromial decompression with usual medical care for subacromial impingement syndrome are presented. The results of this study will improve insight into the best moment of referral for surgery for SIS

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders

    Get PDF
    There is a long-standing paradox that N-methyl-D-aspartate receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signaling, leads to the build-up of a neuroprotective ‘shield’, whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington’s disease and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling
    corecore