32 research outputs found

    Primary human hepatocytes on biodegradable poly(l-lactic acid) matrices: A promising model for improving transplantation efficiency with tissue engineering *These authors contributed equally to this work.

    Full text link
    Liver transplantation is an established treatment for acute and chronic liver disease. However, because of the shortage of donor organs, it does not fulfill the needs of all patients. Hepatocyte transplantation is promising as an alternative method for the treatment of end-stage liver disease and as bridging therapy until liver transplantation. Our group has been working on the optimization of matrix-based hepatocyte transplantation. In order to increase cell survival after transplantation, freshly isolated human hepatocytes were seeded onto biodegradable poly(l-lactic acid) (PLLA) polymer scaffolds and were cultured in a flow bioreactor. PLLA discs were seeded with human hepatocytes and exposed to a recirculated medium flow for 6 days. Human hepatocytes formed spheroidal aggregates with a liver-like morphology and active metabolic function. Phase contrast microscopy showed increasing numbers of spheroids of increasing diameter during the culture period. Hematoxylin and eosin histology showed viable and intact hepatocytes inside the spheroids. Immunohistochemistry confirmed sustained hepatocyte function and a preserved hepatocyte-specific cytoskeleton. Albumin, alpha-1-antitrypsin, and urea assays showed continued production during the culture period. Northern blot analysis demonstrated increasing albumin signals. Scanning electron micrographs showed hepatocyte spheroids with relatively smooth undulating surfaces and numerous microvilli. Transmission electron micrographs revealed intact hepatocytes and junctional complexes with coated pits and vesicles inside the spheroids. Therefore, we conclude that primary human hepatocytes, precultured in a flow bioreactor on a PLLA scaffold, reorganize to form morphologically intact liver neotissue, and this might offer an optimized method for hepatocyte transplantation because of the expected reduction of the initial cell loss, the high regenerative potential in vivo, and the preformed functional integrity. Liver Transpl 17:104–114, 2011. © 2011 AASLD.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79418/1/22200_ftp.pd

    Entecavir plus tenofovir combination as rescue therapy in pre-treated chronic hepatitis B patients: an international multicenter cohort study

    No full text
    BACKGROUND & AIMS: Long-term viral suppression is a major goal to prevent disease progression in patients with HBV. Aim of this study was to investigate the efficacy and safety of entecavir plus tenofovir combination in 57 CHB partial responders or multidrug resistant patients. METHODS: Investigator-initiated open-label cohort study. Quantitative HBV-DNA measurement and resistance testing (line-probe-assays and direct-sequencing) at baseline and every 3 months. RESULTS: Fifty seven patients (37 HBeAg+), median age 45 years, previously treated with a median of three lines of antiviral therapy (range 1-6), 24/57 with advanced liver disease, were included. Median ALT at baseline was 1.0 ULN (range 0.3-22) and HBV-DNA 1.5 7 10(4)IU/ml (range 500-1 7 10(11)IU/ml). Median treatment duration of combination therapy was 21 months. HBV-DNA level dropped 3 logs (median, range 0-8 log; p<0.0001), 51/57 patients became HBV-DNA undetectable, median after 6 months (95% CI, 4.6-7). The probability for HBV DNA suppression was not reduced in patients with adefovir or entecavir resistance or in patients with advanced liver disease. Viral suppression led to decline in ALT (median 0.7 ULN; range 0.2-2.4; p=0.001). Five patients lost HBeAg (after 15, 18, 20, 21, and 27 months, respectively), one patient showed HBs-seroconversion. Patients with advanced disease did not show clinical decompensation, two patients with cirrhosis and undetectable HBV DNA developed HCCs. No death, newly induced renal impairment or lactic acidosis were reported. CONCLUSIONS: Rescue therapy with entecavir and tenofovir in CHB patients harboring viral resistance patterns or showing only partial antiviral responses to preceding therapies was efficient, safe, and well tolerated in patients with and without advanced liver disease (249). Copyright \ua9 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved

    Modeling hepatitis B virus infection, immunopathology and therapy in mice

    No full text
    Despite the availability of a preventive vaccine, chronic hepatitis B virus (HBV) infection-induced liver diseases continue to be a major global public health problem. HBV naturally infects only humans and chimpanzees. This narrow host range has hindered our ability to study the characteristics of the virus and how it interacts with its host. It is thus important to establish small animal models to study HBV infection, persistence, clearance and the immunopathogenesis of chronic hepatitis B. In this review, we briefly summarize currently available animal models for HBV research, then focus on mouse models, especially the recently developed humanized mice that can support HBV infection and immunopathogenesis in vivo. This article is part of a symposium in Antiviral Research on “From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story.

    Immune responses and clinical outcomes after COVID-19 vaccination in patients with liver disease and liver transplant recipients

    No full text
    Background & Aims: Comparative assessments of immunogenicity following different COVID-19 vaccines in patients with distinct liver diseases are lacking. SARS-CoV-2-specific T-cell and antibody responses were evaluated longitudinally after one to three vaccine doses, with long-term follow-up for COVID-19-related clinical outcomes. Methods: A total of 849 participants (355 with cirrhosis, 74 with autoimmune hepatitis [AIH], 36 with vascular liver disease [VLD], 257 liver transplant recipients [LTRs] and 127 healthy controls [HCs]) were recruited from four countries. Standardised immune assays were performed pre and post three vaccine doses (V1-3). Results: In the total cohort, there were incremental increases in antibody titres after each vaccine dose (p <0.0001). Factors associated with reduced antibody responses were age and LT, whereas heterologous vaccination, prior COVID-19 and mRNA platforms were associated with greater responses. Although antibody titres decreased between post-V2 and pre-V3 (p = 0.012), patients with AIH, VLD, and cirrhosis had equivalent antibody responses to HCs post-V3. LTRs had lower and more heterogenous antibody titres than other groups, including post-V3 where 9% had no detectable antibodies; this was heavily influenced by intensity of immunosuppression. Vaccination increased T-cell IFNγ responses in all groups except LTRs. Patients with liver disease had lower functional antibody responses against nine Omicron subvariants and reduced T-cell responses to Omicron BA.1-specific peptides compared to wild-type. 122 cases of breakthrough COVID-19 were reported of which 5/122 (4%) were severe. Of the severe cases, 4/5 (80%) occurred in LTRs and 2/5 (40%) had no serological response post-V2. Conclusion: After three COVID-19 vaccines, patients with liver disease generally develop robust antibody and T-cell responses to vaccination and have mild COVID-19. However, LTRs have sustained no/low antibody titres and appear most vulnerable to severe disease. Impact and implications: Standardised assessments of the immune response to different COVID-19 vaccines in patients with liver disease are lacking. We performed antibody and T-cell assays at multiple timepoints following up to three vaccine doses in a large cohort of patients with a range of liver conditions. Overall, the three most widely available vaccine platforms were immunogenic and appeared to protect against severe breakthrough COVID-19. This will provide reassurance to patients with chronic liver disease who were deemed at high risk of severe COVID-19 during the pre-vaccination era, however, liver transplant recipients had the lowest antibody titres and remained vulnerable to severe breakthrough infection. We also characterise the immune response to multiple SARS-CoV-2 variants and describe the interaction between disease type, severity, and vaccine platform. These insights may prove useful in the event of future viral infections which also require rapid vaccine development and delivery to patients with liver disease
    corecore