9,959 research outputs found

    Recursive Copy and Paste GAN: Face Hallucination from Shaded Thumbnails.

    Full text link
    Existing face hallucination methods based on convolutional neural networks (CNNs) have achieved impressive performance on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are captured in non-uniform illumination conditions. This paper proposes a Recursive Copy and Paste Generative Adversarial Network (Re-CPGAN) to recover authentic high-resolution (HR) face images while compensating for non-uniform illumination. To this end, we develop two key components in our Re-CPGAN: internal and recursive external Copy and Paste networks (CPnets). Our internal CPnet exploits facial self-similarity information residing in the input image to enhance facial details; while our recursive external CPnet leverages an external guided face for illumination compensation. Specifically, our recursive external CPnet stacks multiple external Copy and Paste (EX-CP) units in a compact model to learn normal illumination and enhance facial details recursively. By doing so, our method offsets illumination and upsamples facial details progressively in a coarse-to-fine fashion, thus alleviating the ambiguity of correspondences between LR inputs and external guided inputs. Furthermore, a new illumination compensation loss is developed to capture illumination from the external guided face image effectively. Extensive experiments demonstrate that our method achieves authentic HR images in a uniform illumination condition with a 16x magnification factor and outperforms state-of-the-art methods qualitatively and quantitatively

    Gene and Pathway-Based Analysis: Second Wave of Genome-wide Association Studies

    Get PDF
    Despite great success of GWAS in identification of common genetic variants associated with complex diseases, the current GWAS have focused on single SNP analysis. However, single SNP analysis often identifies a number of the most significant SNPs that account for only a small proportion of the genetic variants and offers limited understanding of complex diseases. To overcome these limitations, we propose gene and pathway-based association analysis as a new paradigm for GWAS. As a proof of concept, we performed a comprehensive gene and pathway-based association analysis for thirteen published GWAS. Our results showed that the proposed new paradigm for GWAS not only identified the genes that include significant SNPs found by single SNP analysis, but also detected new genes in which each single SNP conferred small disease risk, but their joint actions were implicated in the development of diseases. The results also demonstrated that the new paradigm for GWAS was able to identify biologically meaningful pathways associated with the diseases which were confirmed by gene-set rich analysis using gene expression data

    Self doping effect and successive magnetic transitions in superconducting Sr2_2VFeAsO3_3

    Get PDF
    We have studied a quinary Fe-based superconductor Sr2_2VFeAsO3_3 by the measurements of x-ray diffraction, x-ray absorption, M\"{o}ssbauer spectrum, resistivity, magnetization and specific heat. This apparently undoped oxyarsenide is shown to be self doped via electron transfer from the V3+^{3+} ions. We observed successive magnetic transitions within the VO2_2 layers: an antiferromagnetic transition at 150 K followed by a weak ferromagnetic transition at 55 K. The spin orderings within the VO2_2 planes are discussed based on mixed valence of V3+^{3+} and V4+^{4+}.Comment: One Table and more references are adde

    Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates

    Get PDF
    Within the t-t'-J model, the electron spectrum and quasiparticle dispersion in doped bilayer cuprates in the normal state are discussed by considering the bilayer interaction. It is shown that the bilayer interaction splits the electron spectrum of doped bilayer cuprates into the bonding and antibonding components around the (Ï€,0)(\pi,0) point. The differentiation between the bonding and antibonding components is essential, which leads to two main flat bands around the (Ï€,0)(\pi,0) point below the Fermi energy. In analogy to the doped single layer cuprates, the lowest energy states in doped bilayer cuprates are located at the (Ï€/2,Ï€/2)(\pi/2,\pi/2) point. Our results also show that the striking behavior of the electronic structure in doped bilayer cuprates is intriguingly related to the bilayer interaction together with strong coupling between the electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and discussions, accepted for publication in Phys. Rev.

    Peacock Bundles: Bundle Coloring for Graphs with Globality-Locality Trade-off

    Full text link
    Bundling of graph edges (node-to-node connections) is a common technique to enhance visibility of overall trends in the edge structure of a large graph layout, and a large variety of bundling algorithms have been proposed. However, with strong bundling, it becomes hard to identify origins and destinations of individual edges. We propose a solution: we optimize edge coloring to differentiate bundled edges. We quantify strength of bundling in a flexible pairwise fashion between edges, and among bundled edges, we quantify how dissimilar their colors should be by dissimilarity of their origins and destinations. We solve the resulting nonlinear optimization, which is also interpretable as a novel dimensionality reduction task. In large graphs the necessary compromise is whether to differentiate colors sharply between locally occurring strongly bundled edges ("local bundles"), or also between the weakly bundled edges occurring globally over the graph ("global bundles"); we allow a user-set global-local tradeoff. We call the technique "peacock bundles". Experiments show the coloring clearly enhances comprehensibility of graph layouts with edge bundling.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    A Flux-Limited Sample of z~1 Ly-alpha Emitting Galaxies in the CDFS

    Full text link
    We describe a method for obtaining a flux-limited sample of Ly-alpha emitters from GALEX grism data. We show that the multiple GALEX grism images can be converted into a three-dimensional (two spatial axes and one wavelength axis) data cube. The wavelength slices may then be treated as narrowband images and searched for emission-line galaxies. For the GALEX NUV grism data, the method provides a Ly-alpha flux-limited sample over the redshift range z=0.67-1.16. We test the method on the Chandra Deep Field South field, where we find 28 Ly-alpha emitters with faint continuum magnitudes (NUV>22) that are not present in the GALEX pipeline sample. We measure the completeness by adding artificial emitters and measuring the fraction recovered. We find that we have an 80% completeness above a Ly-alpha flux of 10^-15 erg/cm^2/s. We use the UV spectra and the available X-ray data and optical spectra to estimate the fraction of active galactic nuclei in the selection. We report the first detection of a giant Ly-alpha blob at z<1, though we find that these objects are much less common at z=1 than at z=3. Finally, we compute limits on the z~1 Ly-alpha luminosity function and confirm that there is a dramatic evolution in the luminosity function over the redshift range z=0-1.Comment: 18 pages, in press at The Astrophysical Journa

    Role of multiband effects and electron-hole asymmetry in the superconductivity and normal state properties of Ba(Fe1−x_{1-x}Cox_{x})2_{2}As2_{2}

    Full text link
    We report a systematic investigation, together with a theoretical analysis, of the resistivity and Hall effect in single crystals of Ba(Fe1−x_{1-x}Cox_{x})2_{2}As2_{2}, over a wide doping range. We find a surprisingly great disparity between the relaxation rates of the holes and the electrons, in excess of an order of magnitude in the low-doping, low-temperature regime. The ratio of the electron to hole mobilities diminishes with temperature and doping (away from the magnetically ordered state) and becomes more conventional. We also find a straightforward explanation of the large asymmetry (compared to cuprates) of the superconducting dome: in the underdoped regime the decisive factor is the competition between AF and superconductivity (SC), while in the overdoped regime the main role is played by degradation of the nesting that weakens the pairing interaction. Our results indicate that spin-fluctuations due to interband electron-hole scattering play a crucial role not only in the superconducting pairing, but also in the normal transport.Comment: 4 pages, 4 figure

    Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods

    Full text link
    This article is devoted to computing the lower and upper bounds of the Laplace eigenvalue problem. By using the special nonconforming finite elements, i.e., enriched Crouzeix-Raviart element and extension Q1rotQ_1^{\rm rot}, we get the lower bound of the eigenvalue. Additionally, we also use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue. The postprocessing method need only to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once. Some numerical results are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure

    A phase-resolved XMM-Newton Campaign on the Colliding Wind Binary HD 152248

    Get PDF
    We report the first results of an XMM-Newton monitoring campaign of the NGC 6231 open cluster in the Sco OB1 association. This first paper focuses on the massive colliding wind binary HD 152248, which is the brightest X-ray source of the cluster. The campaign, with a total duration of 180 ksec, was split into six separate observations, following the orbital motion of HD 152248. The X-ray flux from this system presents a clear, asymmetric modulation with the phase and ranges from 0.73 to 1.18 10-12 erg s-1 cm-2 in the [0.5-10.0 keV] energy band. The maximum of the emission is reached slightly after apastron. The EPIC spectra are quite soft and peak around 0.8-0.9 keV. We characterize their shape using several combinations of mekal models and power-law spectra and we detect significant spectral variability in the [0.5-2.5 keV] energy band. We also perform 2-D hydrodynamical simulations using different sets of parameters that closely reproduce the physical and orbital configuration of the HD 152248 system at the time of the six XMM-Newton pointings. This allows a direct confrontation of the model predictions with the constraints deduced from the X-ray observations of the system. We show that the observed variation of the flux can be explained by a variation of the X-ray emission from the colliding wind zone, diluted by the softer X-ray contribution of the two O-type stars of the system. Our simulations also reveal that the interaction region of HD 152248 should be highly unstable, giving rise to shells of dense gas that are separated by low density regions. Finally, we perform a search for short-term variability in the light curves of the system and we show that trends are present within several of the 30 ksec exposures of our campaign. Further, most of these trends are in good .Comment: Accepted by MNRAS; 22 pages; without figures; complete PS version (including figures) on http://vela.astro.ulg.ac.be/Preprints/index.htm
    • …
    corecore