This article is devoted to computing the lower and upper bounds of the
Laplace eigenvalue problem. By using the special nonconforming finite elements,
i.e., enriched Crouzeix-Raviart element and extension Q1rot, we get
the lower bound of the eigenvalue. Additionally, we also use conforming finite
elements to do the postprocessing to get the upper bound of the eigenvalue. The
postprocessing method need only to solve the corresponding source problems and
a small eigenvalue problem if higher order postprocessing method is
implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues
simultaneously by solving eigenvalue problem only once. Some numerical results
are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure