1,433 research outputs found
Socioeconomic predictors and consequences of depression among primary care attenders with non-communicable diseases in the Western Cape, South Africa:Cohort study within a randomised trial
Background: Socioeconomic predictors and consequences of depression and its treatment were investigated in 4393 adults with specified non-communicable diseases attending 38 public sector primary care clinics in the Eden and Overberg districts of the Western Cape, South Africa. Methods: Participants were interviewed at baseline in 2011 and 14 months later, as part of a randomised controlled trial of a guideline-based intervention to improve diagnosis and management of chronic diseases. The 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) was used to assess depression symptoms, with higher scores representing more depressed mood. Results: Higher CESD-10 scores at baseline were independently associated with being less educated (p=0.004) and having lower income (p=0.003). CESD-10 scores at follow-up were higher in participants with less education (p=0.010) or receiving welfare grants (p=0.007) independent of their baseline scores. Participants with CESD-10 scores of 10 or more at baseline (56% of all participants) had 25% higher odds of being unemployed at follow-up (p=0.016), independently of baseline CESD-10 score and treatment status. Among participants with baseline CESD-10 scores of 10 or more, antidepressant medication at baseline was independently more likely in participants who had more education (p=0.002), higher income (p<0.001), or were unemployed (p=0.001). Antidepressant medication at follow up was independently more likely in participants with higher income (p=0.023), and in clinics with better access to pharmacists (p=0.053) and off-site drug delivery (p=0.013). Conclusions: Socioeconomic disadvantage appears to be both a cause and consequence of depression, and may also be a barrier to treatment. There are opportunities for improving the prevention, diagnosis and treatment of depression in primary care in inequitable middle income countries like South Africa. Trial registration: The trial is registered with Current Controlled Trials (ISRCTN20283604) and the Office for Human Research Protections Database (IRB00001938, FWA00001637)
Binary pattern tile set synthesis is NP-hard
In the field of algorithmic self-assembly, a long-standing unproven
conjecture has been that of the NP-hardness of binary pattern tile set
synthesis (2-PATS). The -PATS problem is that of designing a tile assembly
system with the smallest number of tile types which will self-assemble an input
pattern of colors. Of both theoretical and practical significance, -PATS
has been studied in a series of papers which have shown -PATS to be NP-hard
for , , and then . In this paper, we close the
fundamental conjecture that 2-PATS is NP-hard, concluding this line of study.
While most of our proof relies on standard mathematical proof techniques, one
crucial lemma makes use of a computer-assisted proof, which is a relatively
novel but increasingly utilized paradigm for deriving proofs for complex
mathematical problems. This tool is especially powerful for attacking
combinatorial problems, as exemplified by the proof of the four color theorem
by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and
Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by
Konev and Lisitsa using computer programs. We utilize a massively parallel
algorithm and thus turn an otherwise intractable portion of our proof into a
program which requires approximately a year of computation time, bringing the
use of computer-assisted proofs to a new scale. We fully detail the algorithm
employed by our code, and make the code freely available online
Isometric force production parameters during normal and experimental low back pain conditions
BACKGROUND: The control of force and its between-trial variability are often taken as critical determinants of motor performance. Subjects performed isometric trunk flexion and extension forces without and with experiment pain to examine if pain yields changes in the control of trunk forces. The objective of this study is to determine if experimental low back pain modifies trunk isometric force production. METHODS: Ten control subjects participated in this study. They were required to exert 50 and 75% of their isometric maximal trunk flexion and extension torque. In a learning phase preceding the non painful and painful trials, visual and verbal feedbacks were provided. Then, subjects were asked to perform 10 trials without any feedback. Time to peak torque, time to peak torque variability, peak torque variability as well as constant and absolute error in peak torque were calculated. Time to peak and peak dF/dt were computed to determine if the first peak of dF/dt could predict the peak torque achieved. RESULTS: Absolute and constant errors were higher in the presence of a painful electrical stimulation. Furthermore, peak torque variability for the higher level of force was increased with in the presence of experimental pain. The linear regressions between peak dF/dt, time to peak dF/dt and peak torque were similar for both conditions. Experimental low back pain yielded increased absolute and constant errors as well as a greater peak torque variability for the higher levels of force. The control strategy, however, remained the same between the non painful and painful condition. Cutaneous pain affects some isometric force production parameters but modifications of motor control strategies are not implemented spontaneously. CONCLUSIONS: It is hypothesized that adaptation of motor strategies to low back pain is implemented gradually over time. This would enable LBP patients to perform their daily tasks with presumably less pain and more accuracy
No imminent quantum supremacy by boson sampling
It is predicted that quantum computers will dramatically outperform their
conventional counterparts. However, large-scale universal quantum computers are
yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to
the platform of photons in linear optics, which has sparked interest as a rapid
way to demonstrate this quantum supremacy. Photon statistics are governed by
intractable matrix functions known as permanents, which suggests that sampling
from the distribution obtained by injecting photons into a linear-optical
network could be solved more quickly by a photonic experiment than by a
classical computer. The contrast between the apparently awesome challenge faced
by any classical sampling algorithm and the apparently near-term experimental
resources required for a large boson sampling experiment has raised
expectations that quantum supremacy by boson sampling is on the horizon. Here
we present classical boson sampling algorithms and theoretical analyses of
prospects for scaling boson sampling experiments, showing that near-term
quantum supremacy via boson sampling is unlikely. While the largest boson
sampling experiments reported so far are with 5 photons, our classical
algorithm, based on Metropolised independence sampling (MIS), allowed the boson
sampling problem to be solved for 30 photons with standard computing hardware.
We argue that the impact of experimental photon losses means that demonstrating
quantum supremacy by boson sampling would require a step change in technology.Comment: 25 pages, 9 figures. Comments welcom
The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections
Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013
The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate
cocaine-induced changes in the concentrations of different
redox forms of cysteine (Cys) and homocysteine (Hcy),
and products of anaerobic Cys metabolism, i.e., labile,
reduced sulfur (LS) in the rat plasma. The above-mentioned
parameters were determined after i.p. acute and
subchronic cocaine treatment as well as following i.v.
cocaine self-administration using the yoked procedure.
Additionally, Cys, Hcy, and LS levels were measured
during the 10-day extinction training in rats that underwent
i.v. cocaine administration. Acute i.p. cocaine treatment
increased the total and protein-bound Hcy contents,
decreased LS, and did not change the concentrations of Cys
fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered
the total and protein-bound Cys concentrations while
LS level was unchanged. Cocaine self-administration
enhanced the total and protein-bound Hcy levels, decreased
LS content, and did not affect the Cys fractions. On the
other hand, yoked cocaine infusions did not alter the concentration
of Hcy fractions while decreased the total and
protein-bound Cys and LS content. This extinction training
resulted in the lack of changes in the examined parameters
in rats with a history of cocaine self-administration while in
the yoked cocaine group an increase in the plasma free Cys
fraction and LS was seen. Our results demonstrate for the
first time that cocaine does evoke significant changes in
homeostasis of thiol amino acids Cys and Hcy, and in some
products of anaerobic Cys metabolism, which are dependent
on the way of cocaine administration
A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering
A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors
Biomechanical evaluation of immediate stability with rectangular versus cylindrical interbody cages in stabilization of the lumbar spine
BACKGROUND: Recent cadaver studies show stability against axial rotation with a cylindrical cage is marginally superior to a rectangular cage. The purpose of this biomechanical study in cadaver spine was to evaluate the stability of a new rectangular titanium cage design, which has teeth similar to the threads of cylindrical cages to engage the endplates. METHODS: Ten motion segments (five L2-3, five L4-5) were tested. From each cadaver spine, one motion segment was fixed with a pair of cylindrical cages (BAK, Sulzer Medica) and the other with paired rectangular cages (Rotafix, Corin Spinal). Each specimen was tested in an unconstrained state, after cage introduction and after additional posterior translaminar screw fixation. The range of motion (ROM) in flexion-extension, lateral bending, and rotation was tested in a materials testing machine, with +/- 5 Nm cyclical load over 10 sec per cycle; data from the third cycle was captured for analysis. RESULTS: ROM in all directions was significantly reduced (p < 0.05) with both types of cages. There was no significant difference in reduction of ROM in flexion-extension (p = 0.6) and rotation (p = 0.92) between the two cage groups, but stability in lateral bending was marginally superior with the rectangular cages (p = 0.11). Additional posterior fixation further reduced the ROM significantly (p < 0.05) in most directions in both cage groups, but did not show any difference between the cage groups. CONCLUSIONS: There was no significant difference in immediate stability in any direction between the threaded cylindrical cage and the new design of the rectangular cage with endplate teeth
Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns
Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term ‘fractal assembly’, by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95^(m − 1) for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures
- …