5,225 research outputs found

    Smart Demand for Improving Short-term Voltage Control on Distribution Networks

    Get PDF
    Smart grids must involve active roles from end users in order to be truly smart. The energy consumption has to be done in a flexible and intelligent manner, in accordance with the current conditions of the power system. Moreover, with the advent of dispersed and renewable generation, increasing customer integration to aid power system performance is almost inevitable. This study introduces a new type of smart demand side technology, denoted demand as voltage controlled reserve (DVR), to improve short-term voltage control, where customers are expected to play a more dynamic role to improve voltage control. The technology can be provided by thermostatically controlled loads as well as other types of load. This technology is proven to be effective in case of distribution systems with a large composition of induction motors, where the voltage presents a slow recovery characteristic due to deceleration of the motors during faults. This study presents detailed models, discussion and simulation tests to demonstrate the technical viability and effectiveness of the DVR technology for short-term voltage control.3872473

    Characterization of Mycobacterium chelonae-like strains by comparative genomics

    Get PDF
    Isolates of the Mycobacterium chelonae-M. abscessus complex are subdivided into four clusters (CHI to CHIV) in the INNO-LiPA (R) Mycobacterium spp DNA strip assay. A considerable phenotypic variability was observed among isolates of the CHII cluster. In this study, we examined the diversity of 26 CHII cluster isolates by phenotypic analysis, drug susceptibility testing, whole genome sequencing and single-gene analysis. Pairwise genome comparisons were performed using several approaches, including average nucleotide identity (ANI) and genome-to-genome distance (GGD) among others. Based on ANI and GGD the isolates were identified as M. chelonae (14 isolates), M. franklinii (2 isolates) and M. salmoniphium (1 isolate). The remaining 9 isolates were subdivided into three novel putative genomospecies. Phenotypic analyses including drug susceptibility testing, as well as whole genome comparison by TETRA and delta differences, were not helpful in separating the groups revealed by ANI and GGD. The analysis of standard four conserved genomic regions showed that rpoB alone and the concatenated sequences clearly distinguished the taxonomic groups delimited by whole genome analyses. In conclusion, the CHII INNO-LiPa is not a homogeneous cluster; on the contrary, it is composed of closely related different species belonging to the M. chelonae-M. abscessus complex and also several unidentified isolates. The detection of these isolates, putatively novel species, indicates a wider inner variability than the presently known in this complex

    Chern-Simmons electrodynamics and torsion dark matter axions

    Full text link
    In this paper, we delve into the influence of torsion axial pseudo vector on dark photons in an axion torsionic background, as investigated previously by Duncan et al[ Nucl Phys B 387:215 (1992)]. Notably, axial torsion, owing to its significantly greater mass compared to axions, gives rise to magnetic helicity in torsionful Chern-Simons (CS) electrodynamics, leading to the damping of magnetic fields. In QCD scale the damping from dark massive photons leads us to obtain a magnetic field of 10810^{-8} Gauss, which is approximated the order of magnitude of magnetic fields at present universe. This result is obtained by considering that torsion has the value of the 1 MeV at the early universe, and can be improved to the higher value of 10310^{-3} Gauss when the axial torsion 0-component is given by 10810^{8} MeV and the mass of dark photon is approximated equal to the axion. The axion plays a crucial role in achieving CS dynamo action arising from axions. This study is useful in deepening our understanding of fundamental physics, from nuclear interactions to the nature of dark matter.Comment: 14 pages, to be submiite

    Influence of Altitude on the indirect Analysis of α-amylase Content on Wheat Flours

    Full text link
    The objective of this study was to verify the influence of altitude on the indirect analysis of α-amylase content on wheat flours. The experimental designused was completely randomized, with eight treatments and three repetitions. The treatments consisted of the analysis of the falling number from flours of four wheat classes (basic, domestic, bread and improver) on the elevations zero, 412, 540, 761, 934, 975, 1,040 and 1,095 meters. After the trial results, under the correction of the averages above 600 meters of elevation, it was verified that there was a significant difference between the results of distinct altitudes, for the four wheat classes. When a polynomial regression is applied, for the values without correction, it was obtained that aquadratic regression equation correlates the falling number values with altitude; however, the coefficient of determination was very low, highlighting the major influence of the different equipments that were used to measure the falling number instead of the different altitudes
    corecore