108 research outputs found

    Would You Choose to be Happy? Tradeoffs Between Happiness and the Other Dimensions of Life in a Large Population Survey

    Get PDF
    A large literature documents the correlates and causes of subjective well-being, or happiness. But few studies have investigated whether people choose happiness. Is happiness all that people want from life, or are they willing to sacrifice it for other attributes, such as income and health? Tackling this question has largely been the preserve of philosophers. In this article, we find out just how much happiness matters to ordinary citizens. Our sample consists of nearly 13,000 members of the UK and US general populations. We ask them to choose between, and make judgments over, lives that are high (or low) in different types of happiness and low (or high) in income, physical health, family, career success, or education. We find that people by and large choose the life that is highest in happiness but health is by far the most important other concern, with considerable numbers of people choosing to be healthy rather than happy. We discuss some possible reasons for this preference

    Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review

    Get PDF
    Numerical methods for oscillatory, multi-scale Hamiltonian systems are reviewed. The construction principles are described, and the algorithmic and analytical distinction between problems with nearly constant high frequencies and with time- or state-dependent frequencies is emphasized. Trigonometric integrators for the first case and adiabatic integrators for the second case are discussed in more detail

    On the Nonlinear Stability of Asymptotically Anti-de Sitter Solutions

    Get PDF
    Despite the recent evidence that anti-de Sitter spacetime is nonlinearly unstable, we argue that many asymptotically anti-de Sitter solutions are nonlinearly stable. This includes geons, boson stars, and black holes. As part of our argument, we calculate the frequencies of long-lived gravitational quasinormal modes of AdS black holes in various dimensions. We also discuss a new class of asymptotically anti-de Sitter solutions describing noncoalescing black hole binaries.Comment: 26 pages. 5 figure

    Tensor completion in hierarchical tensor representations

    Full text link
    Compressed sensing extends from the recovery of sparse vectors from undersampled measurements via efficient algorithms to the recovery of matrices of low rank from incomplete information. Here we consider a further extension to the reconstruction of tensors of low multi-linear rank in recently introduced hierarchical tensor formats from a small number of measurements. Hierarchical tensors are a flexible generalization of the well-known Tucker representation, which have the advantage that the number of degrees of freedom of a low rank tensor does not scale exponentially with the order of the tensor. While corresponding tensor decompositions can be computed efficiently via successive applications of (matrix) singular value decompositions, some important properties of the singular value decomposition do not extend from the matrix to the tensor case. This results in major computational and theoretical difficulties in designing and analyzing algorithms for low rank tensor recovery. For instance, a canonical analogue of the tensor nuclear norm is NP-hard to compute in general, which is in stark contrast to the matrix case. In this book chapter we consider versions of iterative hard thresholding schemes adapted to hierarchical tensor formats. A variant builds on methods from Riemannian optimization and uses a retraction mapping from the tangent space of the manifold of low rank tensors back to this manifold. We provide first partial convergence results based on a tensor version of the restricted isometry property (TRIP) of the measurement map. Moreover, an estimate of the number of measurements is provided that ensures the TRIP of a given tensor rank with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral

    Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations

    Get PDF
    In this paper we motivate, formulate and analyze the Multi-Configuration Time-Dependent Hartree-Fock (MCTDHF) equations for molecular systems under Coulomb interaction. They consist in approximating the N-particle Schrodinger wavefunction by a (time-dependent) linear combination of (time-dependent) Slater determinants. The equations of motion express as a system of ordinary differential equations for the expansion coefficients coupled to nonlinear Schrodinger-type equations for mono-electronic wavefunctions. The invertibility of the one-body density matrix (full-rank hypothesis) plays a crucial role in the analysis. Under the full-rank assumption a fiber bundle structure shows up and produces unitary equivalence between convenient representations of the equations. We discuss and establish existence and uniqueness of maximal solutions to the Cauchy problem in the energy space as long as the density matrix is not singular. A sufficient condition in terms of the energy of the initial data ensuring the global-in-time invertibility is provided (first result in this direction). Regularizing the density matrix breaks down energy conservation, however a global well-posedness for this system in L^2 is obtained with Strichartz estimates. Eventually solutions to this regularized system are shown to converge to the original one on the time interval when the density matrix is invertible.Comment: 48 pages, 1 figur

    A bootstrap method for sum-of-poles approximations

    Get PDF
    A bootstrap method is presented for finding efficient sum-of-poles approximations of causal functions. The method is based on a recursive application of the nonlinear least squares optimization scheme developed in (Alpert et al. in SIAM J. Numer. Anal. 37:1138–1164, 2000), followed by the balanced truncation method for model reduction in computational control theory as a final optimization step. The method is expected to be useful for a fairly large class of causal functions encountered in engineering and applied physics. The performance of the method and its application to computational physics are illustrated via several numerical examples

    Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems

    Get PDF
    [Image: see text] We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement
    • …
    corecore