108 research outputs found
Would You Choose to be Happy? Tradeoffs Between Happiness and the Other Dimensions of Life in a Large Population Survey
A large literature documents the correlates and causes of subjective well-being, or happiness. But few studies have investigated whether people choose happiness. Is happiness all that people want from life, or are they willing to sacrifice it for other attributes, such as income and health? Tackling this question has largely been the preserve of philosophers. In this article, we find out just how much happiness matters to ordinary citizens. Our sample consists of nearly 13,000 members of the UK and US general populations. We ask them to choose between, and make judgments over, lives that are high (or low) in different types of happiness and low (or high) in income, physical health, family, career success, or education. We find that people by and large choose the life that is highest in happiness but health is by far the most important other concern, with considerable numbers of people choosing to be healthy rather than happy. We discuss some possible reasons for this preference
Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review
Numerical methods for oscillatory, multi-scale Hamiltonian systems are reviewed. The construction principles are described, and the algorithmic and analytical distinction between problems with nearly constant high frequencies and with time- or state-dependent frequencies is emphasized. Trigonometric integrators for the first case and adiabatic integrators for the second case are discussed in more detail
On the Nonlinear Stability of Asymptotically Anti-de Sitter Solutions
Despite the recent evidence that anti-de Sitter spacetime is nonlinearly
unstable, we argue that many asymptotically anti-de Sitter solutions are
nonlinearly stable. This includes geons, boson stars, and black holes. As part
of our argument, we calculate the frequencies of long-lived gravitational
quasinormal modes of AdS black holes in various dimensions. We also discuss a
new class of asymptotically anti-de Sitter solutions describing noncoalescing
black hole binaries.Comment: 26 pages. 5 figure
Tensor completion in hierarchical tensor representations
Compressed sensing extends from the recovery of sparse vectors from
undersampled measurements via efficient algorithms to the recovery of matrices
of low rank from incomplete information. Here we consider a further extension
to the reconstruction of tensors of low multi-linear rank in recently
introduced hierarchical tensor formats from a small number of measurements.
Hierarchical tensors are a flexible generalization of the well-known Tucker
representation, which have the advantage that the number of degrees of freedom
of a low rank tensor does not scale exponentially with the order of the tensor.
While corresponding tensor decompositions can be computed efficiently via
successive applications of (matrix) singular value decompositions, some
important properties of the singular value decomposition do not extend from the
matrix to the tensor case. This results in major computational and theoretical
difficulties in designing and analyzing algorithms for low rank tensor
recovery. For instance, a canonical analogue of the tensor nuclear norm is
NP-hard to compute in general, which is in stark contrast to the matrix case.
In this book chapter we consider versions of iterative hard thresholding
schemes adapted to hierarchical tensor formats. A variant builds on methods
from Riemannian optimization and uses a retraction mapping from the tangent
space of the manifold of low rank tensors back to this manifold. We provide
first partial convergence results based on a tensor version of the restricted
isometry property (TRIP) of the measurement map. Moreover, an estimate of the
number of measurements is provided that ensures the TRIP of a given tensor rank
with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its
Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral
Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations
In this paper we motivate, formulate and analyze the Multi-Configuration
Time-Dependent Hartree-Fock (MCTDHF) equations for molecular systems under
Coulomb interaction. They consist in approximating the N-particle Schrodinger
wavefunction by a (time-dependent) linear combination of (time-dependent)
Slater determinants. The equations of motion express as a system of ordinary
differential equations for the expansion coefficients coupled to nonlinear
Schrodinger-type equations for mono-electronic wavefunctions. The invertibility
of the one-body density matrix (full-rank hypothesis) plays a crucial role in
the analysis. Under the full-rank assumption a fiber bundle structure shows up
and produces unitary equivalence between convenient representations of the
equations. We discuss and establish existence and uniqueness of maximal
solutions to the Cauchy problem in the energy space as long as the density
matrix is not singular. A sufficient condition in terms of the energy of the
initial data ensuring the global-in-time invertibility is provided (first
result in this direction). Regularizing the density matrix breaks down energy
conservation, however a global well-posedness for this system in L^2 is
obtained with Strichartz estimates. Eventually solutions to this regularized
system are shown to converge to the original one on the time interval when the
density matrix is invertible.Comment: 48 pages, 1 figur
A bootstrap method for sum-of-poles approximations
A bootstrap method is presented for finding efficient sum-of-poles approximations of causal functions. The method is based on a recursive application of the nonlinear least squares optimization scheme developed in (Alpert et al. in SIAM J. Numer. Anal. 37:1138–1164, 2000), followed by the balanced truncation method for model reduction in computational control theory as a final optimization step. The method is expected to be useful for a fairly large class of causal functions encountered in engineering and applied physics. The performance of the method and its application to computational physics are illustrated via several numerical examples
Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems
[Image: see text] We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement
- …