1,039 research outputs found
Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize
Drought often delays developmental
events so that plant height and above-ground biomass
are reduced, resulting in yield loss due to inadequate
photosynthate. In this study, plant height and biomass
measured by the Normalized Difference Vegetation
Index (NDVI) were used as criteria for drought
tolerance. A total of 305 lines representing temperate,
tropical and subtropical maize germplasm were genotyped
using two single nucleotide polymorphism
(SNP) chips each containing 1536 markers, from
which 2052 informative SNPs and 386 haplotypes
each constructed with two or more SNPs were used for
linkage disequilibrium (LD) or association mapping.
Single SNP- and haplotype-based LD mapping identified
two significant SNPs and three haplotype loci [a
total of four quantitative trait loci (QTL)] for plantheight under well-watered and water-stressed conditions.
For biomass, 32 SNPs and 12 haplotype loci (30
QTL) were identified using NDVIs measured at seven
stages under the two water regimes. Some significant
SNP and haplotype loci for NDVI were shared by
different stages. Comparing significant loci identified
by single SNP- and haplotype-based LD mapping, we
found that six out of the 14 chromosomal regions
defined by haplotype loci each included at least one
significant SNP for the same trait. Significant SNP
haplotype loci explained much higher phenotypic
variation than individual SNPs. Moreover, we found
that two significant SNPs (two QTL) and one haplotype
locus were shared by plant height and NDVI. The
results indicate the power of comparative LD mapping
using single SNPs and SNP haplotypes with QTL
shared by plant height and biomass as secondary traits for drought tolerance in maize
Insurance Coverage Policies for Pharmacogenomic and Multi-Gene Testing for Cancer
Abstract: Insurance coverage policies are a major determinant of patient access to genomic tests. The objective of this study was to examine differences in coverage policies for guideline-recommended pharmacogenomic tests that inform cancer treatment. We analyzed coverage policies from eight Medicare contractors and 10 private payers for 23 biomarkers (e.g., HER2 and EGFR) and multi-gene tests. We extracted policy coverage and criteria, prior authorization requirements, and an evidence basis for coverage. We reviewed professional society guidelines and their recommendations for use of pharmacogenomic tests. Coverage for KRAS, EGFR, and BRAF tests were common across Medicare contractors and private payers, but few policies covered PML/RARA, CD25, or G6PD. Twelve payers cover at least one multi-gene test for nonsmall cell lung cancer, citing emerging clinical recommendations. Coverage policies for single and multi-gene tests for cancer treatments are relatively consistent among Medicare contractors despite the lack of national coverage determinations. In contrast, coverage for these tests varied across private payers. Patient access to tests is governed by prior authorization among eight private payers. Substantial variations in how payers address guideline-recommended pharmacogenomic tests and the common use of prior authorization underscore the need for additional studies of the effects of coverage variation on cancer care and patient outcomes
Transverse Spin Structure of the Nucleon through Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic Reaction at Jefferson Lab
Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to
perform precision studies of the transverse spin and
transverse-momentum-dependent structure in the valence quark region for both
the proton and the neutron. In this paper, we focus our discussion on a
recently approved experiment on the neutron as an example of the precision
studies planned at JLab. The new experiment will perform precision measurements
of target Single Spin Asymmetries (SSA) from semi-inclusive electro-production
of charged pions from a 40-cm long transversely polarized He target in
Deep-Inelastic-Scattering kinematics using 11 and 8.8 GeV electron beams. This
new coincidence experiment in Hall A will employ a newly proposed solenoid
spectrometer (SoLID). The large acceptance spectrometer and the high polarized
luminosity will provide precise 4-D (, , and ) data on the
Collins, Sivers, and pretzelocity asymmetries for the neutron through the
azimuthal angular dependence. The full 2 azimuthal angular coverage in the
lab is essential in controlling the systematic uncertainties. The results from
this experiment, when combined with the proton Collins asymmetry measurement
and the Collins fragmentation function determined from the ee collision
data, will allow for a quark flavor separation in order to achieve a
determination of the tensor charge of the d quark to a 10% accuracy. The
extracted Sivers and pretzelocity asymmetries will provide important
information to understand the correlations between the quark orbital angular
momentum and the nucleon spin and between the quark spin and nucleon spin.Comment: 23 pages, 13 figures, minor corrections, matches published versio
Pin1 and neurodegeneration: a new player for prion disorders?
Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
Prenatal exposures and exposomics of asthma
This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity
Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity
Potential therapeutic applications of microbial surface-activecompounds
Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies
Identification and Classification of Conserved RNA Secondary Structures in the Human Genome
The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set of 48,479 candidate RNA structures. This screen finds a large number of known functional RNAs, including 195 miRNAs, 62 histone 3′UTR stem loops, and various types of known genetic recoding elements. Among the highest-scoring new predictions are 169 new miRNA candidates, as well as new candidate selenocysteine insertion sites, RNA editing hairpins, RNAs involved in transcript auto regulation, and many folds that form singletons or small functional RNA families of completely unknown function. While the rate of false positives in the overall set is difficult to estimate and is likely to be substantial, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization
- …