1,690 research outputs found
Experimentally-calibrated population of models predicts and explains inter-subject variability in cardiac cellular\ud electrophysiology
Cellular and ionic causes of variability in the electrophysiological activity of hearts from individuals of the same species are unknown. However, improved understanding of this variability is key to enable prediction of the response of specific hearts to disease and therapies. Limitations of current mathematical modeling and experimental techniques hamper our ability to provide insight into variability. Here we describe a methodology to unravel the ionic determinants of inter-subject variability exhibited in experimental recordings, based on the construction and calibration of populations of models. We illustrate the methodology through its application to rabbit Purkinje preparations, due to their importance in arrhythmias and safety pharmacology assessment. We consider a set of equations describing the biophysical processes underlying rabbit Purkinje electrophysiology and we construct a population of over 10,000 models by randomly assigning specific parameter values corresponding to ionic current conductances and kinetics. We calibrate the model population by closely comparing simulation output and experimental recordings at three pacing frequencies. We show that 213 of the 10,000 candidate models are fully consistent with the experimental dataset. Ionic properties in the 213 models cover a wide range of values, including differences up to ±100% in several conductances. Partial correlation analysis shows that particular combinations of ionic properties determine the precise shape, amplitude and rate dependence of specific action potentials. Finally, we demonstrate that the population of models calibrated using data obtained under physiological conditions quantitatively predicts the action potential duration prolongation caused by exposure to four concentrations of the potassium channel blocker dofetilide
Yang-Mills Interactions and Gravity in Terms of Clifford Algebra
A model of Yang-Mills interactions and gravity in terms of the Clifford
algebra Cl(0,6) is presented. The gravity and Yang-Mills actions are formulated
as different order terms in a generalized action. The feebleness of gravity as
well as the smallness of the cosmological constant and theta terms are
discussed at the classical level. The invariance groups, including the de
Sitter and the Pati-Salam SU(4) subgroups, consist of gauge transformations
from either side of an algebraic spinor. Upon symmetry breaking via the Higgs
fields, the remaining symmetries are the Lorentz SO(1,3), color SU(3),
electromagnetic U(1)_EM, and an additional U(1). The first generation leptons
and quarks are identified with even and odd parts of spinor idempotent
projections. There are still several shortcomings with the current model.
Further research is needed to fully recover the standard model results.Comment: 20 pages, to appear in Advances in Applied Clifford Algebra
Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes
The electronic properties of carbon nanotubes are investigated in the
presence of disorder and a magnetic field parallel or perpendicular to the
nanotube axis. In the parallel field geometry, the -periodic
metal-insulator transition (MIT) induced in metallic or semiconducting
nanotubes is shown to be related to a chirality-dependent shifting of the
energy of the van Hove singularities (VHSs). The effect of disorder on this
magnetic field-related mechanism is considered with a discussion of mean free
paths, localization lengths and magnetic dephasing rate in the context of
recent experiments.Comment: 22 pages, 6 Postscript figures. submitted to Phys. Rev.
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays
The HyperCP experiment (Fermilab E871) was designed to search for rare
phenomena in the decays of charged strange particles, in particular CP
violation in and hyperon decays with a sensitivity of
. Intense charged secondary beams were produced by 800 GeV/c protons
and momentum-selected by a magnetic channel. Decay products were detected in a
large-acceptance, high-rate magnetic spectrometer using multiwire proportional
chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection
system. Nearly identical acceptances and efficiencies for hyperons and
antihyperons decaying within an evacuated volume were achieved by reversing the
polarities of the channel and spectrometer magnets. A high-rate
data-acquisition system enabled 231 billion events to be recorded in twelve
months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX,
submitted to Nucl. Instrum. Meth.
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
- …
