542 research outputs found

    Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays

    Get PDF
    Herein, we prepare vertical and single crystalline porous silicon nanowires (SiNWs) via a two-step metal-assisted electroless etching method. The porosity of the nanowires is restricted by etchant concentration, etching time and doping lever of the silicon wafer. The diffusion of silver ions could lead to the nucleation of silver nanoparticles on the nanowires and open new etching ways. Like porous silicon (PS), these porous nanowires also show excellent photoluminescence (PL) properties. The PL intensity increases with porosity, with an enhancement of about 100 times observed in our condition experiments. A “red-shift” of the PL peak is also found. Further studies prove that the PL spectrum should be decomposed into two elementary PL bands. The peak at 850 nm is the emission of the localized excitation in the nanoporous structure, while the 750-nm peak should be attributed to the surface-oxidized nanostructure. It could be confirmed from the Fourier transform infrared spectroscopy analyses. These porous SiNW arrays may be useful as the nanoscale optoelectronic devices

    The extraordinary evolutionary history of the reticuloendotheliosis viruses

    Get PDF
    The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events

    SProtP: A Web Server to Recognize Those Short-Lived Proteins Based on Sequence-Derived Features in Human Cells

    Get PDF
    Protein turnover metabolism plays important roles in cell cycle progression, signal transduction, and differentiation. Those proteins with short half-lives are involved in various regulatory processes. To better understand the regulation of cell process, it is important to study the key sequence-derived factors affecting short-lived protein degradation. Until now, most of protein half-lives are still unknown due to the difficulties of traditional experimental methods in measuring protein half-lives in human cells. To investigate the molecular determinants that affect short-lived proteins, a computational method was proposed in this work to recognize short-lived proteins based on sequence-derived features in human cells. In this study, we have systematically analyzed many features that perhaps correlated with short-lived protein degradation. It is found that a large fraction of proteins with signal peptides and transmembrane regions in human cells are of short half-lives. We have constructed an SVM-based classifier to recognize short-lived proteins, due to the fact that short-lived proteins play pivotal roles in the control of various cellular processes. By employing the SVM model on human dataset, we achieved 80.8% average sensitivity and 79.8% average specificity, respectively, on ten testing dataset (TE1-TE10). We also obtained 89.9%, 99% and 83.9% of average accuracy on an independent validation datasets iTE1, iTE2 and iTE3 respectively. The approach proposed in this paper provides a valuable alternative for recognizing the short-lived proteins in human cells, and is more accurate than the traditional N-end rule. Furthermore, the web server SProtP (http://reprod.njmu.edu.cn/sprotp) has been developed and is freely available for users

    Comprehensive analysis of human microRNA target networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) mediate posttranscriptional regulation of protein-coding genes by binding to the 3' untranslated region of target mRNAs, leading to translational inhibition, mRNA destabilization or degradation, depending on the degree of sequence complementarity. In general, a single miRNA concurrently downregulates hundreds of target mRNAs. Thus, miRNAs play a key role in fine-tuning of diverse cellular functions, such as development, differentiation, proliferation, apoptosis and metabolism. However, it remains to be fully elucidated whether a set of miRNA target genes regulated by an individual miRNA in the whole human microRNAome generally constitute the biological network of functionally-associated molecules or simply reflect a random set of functionally-independent genes.</p> <p>Methods</p> <p>The complete set of human miRNAs was downloaded from miRBase Release 16. We explored target genes of individual miRNA by using the Diana-microT 3.0 target prediction program, and selected the genes with the miTG score ≧ 20 as the set of highly reliable targets. Then, Entrez Gene IDs of miRNA target genes were uploaded onto KeyMolnet, a tool for analyzing molecular interactions on the comprehensive knowledgebase by the neighboring network-search algorithm. The generated network, compared side by side with human canonical networks of the KeyMolnet library, composed of 430 pathways, 885 diseases, and 208 pathological events, enabled us to identify the canonical network with the most significant relevance to the extracted network.</p> <p>Results</p> <p>Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable targets from 273 miRNAs. Among them, KeyMolnet successfully extracted molecular networks from 232 miRNAs. The most relevant pathway is transcriptional regulation by transcription factors RB/E2F, the disease is adult T cell lymphoma/leukemia, and the pathological event is cancer.</p> <p>Conclusion</p> <p>The predicted targets derived from approximately 20% of all human miRNAs constructed biologically meaningful molecular networks, supporting the view that a set of miRNA targets regulated by a single miRNA generally constitute the biological network of functionally-associated molecules in human cells.</p

    Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes

    Get PDF
    This paper presents a numerical investigation on the behavior of three dimensional granular materials during continuous rotation of principal stress axes using the discrete element method. A dense specimen has been prepared as a representative element using the deposition method and subjected to stress rotation at different deviatoric stress levels. Significant plastic deformation has been observed despite that the principal stresses are kept constant. This contradicts the classical plasticity theory, but is in agreement with previous laboratory observations on sand and glass beads. Typical deformation characteristics, including volume contraction, deformation non-coaxiality, have been successfully reproduced. After a larger number of rotational cycles, the sample approaches the ultimate state with constant void ratio and follows a periodic strain path. The internal structure anisotropy has been quantified in terms of the contact-based fabric tensor. Rotation of principal stress axes densifies the packing, and leads to the increase in coordination numbers. A cyclic rotation in material anisotropy has been observed. The larger the stress ratio, the structure becomes more anisotropic. A larger fabric trajectory suggests more significant structure re-organization when rotating and explains the occurrence of more significant strain rate. The trajectory of the contact-normal based fabric is not centered in the origin, due to the anisotropy in particle orientation generated during sample generation which is persistent throughout the shearing process. The sample sheared at a lower intermediate principal stress ratio (b=0.0) (b=0.0) has been observed to approach a smaller strain trajectory as compared to the case b=0.5 b=0.5 , consistent with a smaller fabric trajectory and less significant structural re-organisation. It also experiences less volume contraction with the out-of plane strain component being dilative

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+eJ/ψπ+πe^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb1\mathrm{fb^{-1}}. We investigate the J/ψπ+πJ/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 11415+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π\pi^{+}\pi^{-} system which results from Y(4260) decay

    General Anesthetics Predicted to Block the GLIC Pore with Micromolar Affinity

    Get PDF
    Although general anesthetics are known to modulate the activity of ligand-gated ion channels in the Cys-loop superfamily, there is at present neither consensus on the underlying mechanisms, nor predictive models of this modulation. Viable models need to offer quantitative assessment of the relative importance of several identified anesthetic binding sites. However, to date, precise affinity data for individual sites has been challenging to obtain by biophysical means. Here, the likely role of pore block inhibition by the general anesthetics isoflurane and propofol of the prokaryotic pentameric channel GLIC is investigated by molecular simulations. Microscopic affinities are calculated for both single and double occupancy binding of isoflurane and propofol to the GLIC pore. Computations are carried out for an open-pore conformation in which the pore is restrained to crystallographic radius, and a closed-pore conformation that results from unrestrained molecular dynamics equilibration of the structure. The GLIC pore is predicted to be blocked at the micromolar concentrations for which inhibition by isofluorane and propofol is observed experimentally. Calculated affinities suggest that pore block by propofol occurs at signifcantly lower concentrations than those for which inhibition is observed: we argue that this discrepancy may result from binding of propofol to an allosteric site recently identified by X-ray crystallography, which may cause a competing gain-of-function effect. Affinities of isoflurane and propofol to the allosteric site are also calculated, and shown to be 3 mM for isoflurane and for propofol; both anesthetics have a lower affinity for the allosteric site than for the unoccupied pore

    Polymorphism in the oxytocin promoter region in patients with lactase non-persistence is not related to symptoms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxytocin and the oxytocin receptor have been demonstrated in the gastrointestinal (GI) tract and have been shown to exert physiological effects on gut motility. The role for oxytocin in the pathophysiology of GI complaints is unknown. The aim of this study was to examine genetic variations or polymorphism of oxytocin (<it>OXT</it>) and its receptor (<it>OXTR</it>) genes in patients with GI complaints without visible organic abnormalities.</p> <p>Methods</p> <p>Genetic variants in the <it>OXT </it>promoter region, and in the <it>OXTR </it>gene in DNA samples from 131 rigorously evaluated patients with Irritable Bowel Syndrome (IBS), 408 homozygous subjects referred for lactase (LCT-13910 C>T, rs4988235) genotyping, and 299 asymptomatic blood donors were compared. One polymorphism related to the <it>OXT </it>gene (rs6133010 A>G) and 4 related to the <it>OXTR </it>gene (rs1465386 G>T, rs3806675 G>A, rs968389 A>G, rs1042778 G>T) were selected for genotyping using Applied Biosystems 7900 HT allele discrimination assays.</p> <p>Results</p> <p>There were no statistically significant differences in the genotype or allele frequencies in any of the SNPs when IBS patients were compared to healthy controls. Among subjects referred for lactase genotyping, the rs6133010 A>G <it>OXT </it>promoter A/G genotype tended to be more common in the 154 non-persistent (27.3%) subjects than in the 254 lactase persistant (18.1%) subjects and in the healthy controls (19.4%) (p = 0.08). When direct comparing, the A/G genotype was less common in the <it>OXT </it>promoter region in controls (p = 0.09) and in subjects with lactase persistence (p = 0.03) compared to subjects with lactase non-persistence. When healthy controls were viewed according to their own LCT-13910 genotypes, the C/C lactase non-persistent controls had a higher frequency for the <it>OXT </it>promoter A/G genotype than LCT-13910 T/T lactase persistent controls (41.2% vs 13.1%).</p> <p>No significant differences in frequencies of the investigated <it>OXTR </it>SNPs were noted in this study.</p> <p>Conclusion</p> <p>The results suggest that polymorphism in the promoter region of the <it>OXT </it>gene is most common in subjects with lactase non-persistence. This polymorphism may not be related to GI symptoms, as it is related to lactase non-persistence also in healthy controls.</p
    corecore