667 research outputs found

    Safety Climate in Organizations

    Get PDF
    Safety climate is a collective construct derived from individuals' shared perceptions of the various ways that safety is valued in the workplace. Research over the past 35 years shows that safety climate is an important predictor of safety behavior and safety outcomes such as accidents and injury. We first review the conceptual foundations of safety climate and explore how the construct can be applied to different levels of analysis. We then review ways that safety climate influences individual processes of sense making, motivation, and work behavior. Next, we explore the impact of safety climate on organization-level outcomes related to both safety and productivity. We conclude with suggestions for future research and practice to support the overall safety of people and organizations

    Robot life: simulation and participation in the study of evolution and social behavior.

    Get PDF
    This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton's Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something (life, evolution, sociality) or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and social behavior relate in contemporary biology and why is it possible for robots to illuminate this relation? These questions are provoked by a strange similarity that has not been noted before: between the problem of simulation in philosophy of science, and Deleuze's reading of Plato on the relationship of ideas, copies and simulacra

    Exploring the affordances of smart toys and connected play in practice

    Get PDF
    What does children’s play look like in the smart toy era? What conceptual frameworks help make sense of the changing practices of children’s connected play worlds? Responding to these questions, this article re-frames discussions about children’s smart toy play within wider theoretical debates about the affordances of new digital materialities. To understand recent transformations of children’s play practices, we propose it is necessary to think of toys as increasingly media-like in their affordances and as connected to wider digital material ecosystems. To demonstrate the potential of this conceptual approach, we explore illustrative examples of two popular smart ‘care toys’. Our analysis identifies three examples of affordances that smart care toys share with other forms of mobile and robotic media: liveliness, affective stickiness and portability. We argue that locating discussions of smart toys within wider conceptual debates about digital materialities can provide new insights into the changing landscape of children’s play

    The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study

    Get PDF
    Background: Current evidence suggests sodium bicarbonate (NaHCO3) should be ingested based upon the individualised alkalotic peak of either blood pH or bicarbonate (HCO3−) because of large inter-individual variations (10–180 min). If such a strategy is to be practical, the blood analyte response needs to be reproducible. Objective: This study aimed to evaluate the degree of reproducibility of both time to peak (TTP) and absolute change in blood pH, HCO3− and sodium (Na+) following acute NaHCO3 ingestion. Methods: Male participants (n = 15) with backgrounds in rugby, football or sprinting completed six randomised treatments entailing ingestion of two doses of 0.2 g·kg−1 body mass (BM) NaHCO3 (SBC2a and b), two doses of 0.3 g·kg−1 BM NaHCO3 (SBC3a and b) or two control treatments (CON1a and b) on separate days. Blood analysis included pH, HCO3− and Na+ prior to and at regular time points following NaHCO3 ingestion over a 3-h period. Results: HCO3− displayed greater reproducibility than pH in intraclass correlation coefficient (ICC) analysis for both TTP (HCO3− SBC2 r = 0.77, P = 0.003; SBC3 r = 0.94, P < 0.001; pH SBC2 r = 0.62, P = 0.044; SBC3 r = 0.71, P = 0.016) and absolute change (HCO3− SBC2 r = 0.89, P < 0.001; SBC3 r = 0.76, P = 0.008; pH SBC2 r = 0.84, P = 0.001; SBC3 r = 0.62, P = 0.041). Conclusion: Our results indicate that both TTP and absolute change in HCO3− is more reliable than pH. As such, these data provide support for an individualised NaHCO3 ingestion strategy to consistently elicit peak alkalosis before exercise. Future work should utilise an individualised NaHCO3 ingestion strategy based on HCO3− responses and evaluate effects on exercise performance

    Principal component and factor analytic models in international sire evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interbull is a non-profit organization that provides internationally comparable breeding values for globalized dairy cattle breeding programmes. Due to different trait definitions and models for genetic evaluation between countries, each biological trait is treated as a different trait in each of the participating countries. This yields a genetic covariance matrix of dimension equal to the number of countries which typically involves high genetic correlations between countries. This gives rise to several problems such as over-parameterized models and increased sampling variances, if genetic (co)variance matrices are considered to be unstructured.</p> <p>Methods</p> <p>Principal component (PC) and factor analytic (FA) models allow highly parsimonious representations of the (co)variance matrix compared to the standard multi-trait model and have, therefore, attracted considerable interest for their potential to ease the burden of the estimation process for multiple-trait across country evaluation (MACE). This study evaluated the utility of PC and FA models to estimate variance components and to predict breeding values for MACE for protein yield. This was tested using a dataset comprising Holstein bull evaluations obtained in 2007 from 25 countries.</p> <p>Results</p> <p>In total, 19 principal components or nine factors were needed to explain the genetic variation in the test dataset. Estimates of the genetic parameters under the optimal fit were almost identical for the two approaches. Furthermore, the results were in a good agreement with those obtained from the full rank model and with those provided by Interbull. The estimation time was shortest for models fitting the optimal number of parameters and prolonged when under- or over-parameterized models were applied. Correlations between estimated breeding values (EBV) from the PC19 and PC25 were unity. With few exceptions, correlations between EBV obtained using FA and PC approaches under the optimal fit were ≥ 0.99. For both approaches, EBV correlations decreased when the optimal model and models fitting too few parameters were compared.</p> <p>Conclusions</p> <p>Genetic parameters from the PC and FA approaches were very similar when the optimal number of principal components or factors was fitted. Over-fitting increased estimation time and standard errors of the estimates but did not affect the estimates of genetic correlations or the predictions of breeding values, whereas fitting too few parameters affected bull rankings in different countries.</p

    Vaccine-Associated Enhanced Respiratory Disease Does Not Interfere with the Adaptive Immune Response Following Challenge with Pandemic A/H1N1 2009

    Get PDF
    The implications of sequential prime and challenge with mismatched influenza A viruses is a concern in mammals, including humans. We evaluated the ability of pigs affected with vaccine-associated enhanced respiratory disease (VAERD) to generate a humoral immune response against the heterologous challenge virus inciting the VAERD. Vaccinated and challenged (V/C) pigs were administered an inactivated swine δ-cluster H1N2 (MN08) vaccine with an HA similar to pre-2009 seasonal human viruses and challenged with heterologous A(H1N1) pandemic 2009 (H1N1pdm09). Vaccination induced MN08-specific hemagglutination inhibition (HI) antibody but not cross-reacting H1N1pdm09 HI antibody. However, vaccinated pigs demonstrated significantly higher post-challenge anti-H1N1pdm09 serum neutralizing (SN) antibodies at 14 and 21 days post inoculation (dpi) compared to nonvaccinated, challenged pigs (NV/C), indicating a priming effect of the vaccine. Serum and lung whole virus anti-H1N1pdm09 IgG ELISA antibodies in the vaccinated group were significantly higher than the challenge only pigs at all-time points evaluated. Lung IgA ELISA antibodies to both antigens were detected at 2, 5, and 21 dpi in vaccine-primed pigs, contrasted against mucosal ELISA antibody responses detected only at 21 dpi in the naïve-challenged group. Collectively, vaccine-primed pigs demonstrated a robust humoral immune response and elevated local adaptive cytokine levels, indicating VAERD does not adversely affect the induction of an immune response to challenge with heterologous virus despite the severe clinical disease and underlying lung pathology. Thus, original antigenic sin does not appear to be a component of VAERD.This article is from Viral Immunology 26 (2013): 314, doi:10.1089/vim.2013.0018.</p

    Principal component approach in variance component estimation for international sire evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dairy cattle breeding industry is a highly globalized business, which needs internationally comparable and reliable breeding values of sires. The international Bull Evaluation Service, Interbull, was established in 1983 to respond to this need. Currently, Interbull performs multiple-trait across country evaluations (MACE) for several traits and breeds in dairy cattle and provides international breeding values to its member countries. Estimating parameters for MACE is challenging since the structure of datasets and conventional use of multiple-trait models easily result in over-parameterized genetic covariance matrices. The number of parameters to be estimated can be reduced by taking into account only the leading principal components of the traits considered. For MACE, this is readily implemented in a random regression model.</p> <p>Methods</p> <p>This article compares two principal component approaches to estimate variance components for MACE using real datasets. The methods tested were a REML approach that directly estimates the genetic principal components (direct PC) and the so-called bottom-up REML approach (bottom-up PC), in which traits are sequentially added to the analysis and the statistically significant genetic principal components are retained. Furthermore, this article evaluates the utility of the bottom-up PC approach to determine the appropriate rank of the (co)variance matrix.</p> <p>Results</p> <p>Our study demonstrates the usefulness of both approaches and shows that they can be applied to large multi-country models considering all concerned countries simultaneously. These strategies can thus replace the current practice of estimating the covariance components required through a series of analyses involving selected subsets of traits. Our results support the importance of using the appropriate rank in the genetic (co)variance matrix. Using too low a rank resulted in biased parameter estimates, whereas too high a rank did not result in bias, but increased standard errors of the estimates and notably the computing time.</p> <p>Conclusions</p> <p>In terms of estimation's accuracy, both principal component approaches performed equally well and permitted the use of more parsimonious models through random regression MACE. The advantage of the bottom-up PC approach is that it does not need any previous knowledge on the rank. However, with a predetermined rank, the direct PC approach needs less computing time than the bottom-up PC.</p

    Effects of Mindfulness-Based Cognitive Therapy on Specificity of Life Goals

    Get PDF
    This study explored the immediate effects of a course of Mindfulness-Based Cognitive Therapy (MBCT) for chronically depressed participants with a history of suicidality on the specificity of important goals for the future. Participants were randomly allocated to immediate treatment with MBCT or to a waitlist condition and life goals were assessed both before and after the treatment or waiting period. Results showed that participants receiving MBCT reported significantly more specific goals post-treatment whereas those allocated to the waitlist condition showed no significant change. Similarly, participants allocated to MBCT regarded themselves as significantly more likely to achieve their important goals post-treatment, whilst again there was no significant change in the waitlist group. Increases in goal specificity were associated with parallel increases in autobiographical memory specificity whereas increases in goal likelihood were associated with reductions in depressed mood. These results suggest that MBCT may enable participants to clarify their important goals and in doing so increase their confidence in their capacity to move in valued life directions

    The Hippocampus Is Coupled with the Default Network during Memory Retrieval but Not during Memory Encoding

    Get PDF
    The brain's default mode network (DMN) is activated during internally-oriented tasks and shows strong coherence in spontaneous rest activity. Despite a surge of recent interest, the functional role of the DMN remains poorly understood. Interestingly, the DMN activates during retrieval of past events but deactivates during encoding of novel events into memory. One hypothesis is that these opposing effects reflect a difference between attentional orienting towards internal events, such as retrieved memories, vs. external events, such as to-be-encoded stimuli. Another hypothesis is that hippocampal regions are coupled with the DMN during retrieval but decoupled from the DMN during encoding. The present fMRI study investigated these two hypotheses by combining a resting-state coherence analysis with a task that measured the encoding and retrieval of both internally-generated and externally-presented events. Results revealed that the main DMN regions were activated during retrieval but deactivated during encoding. Counter to the internal orienting hypothesis, this pattern was not modulated by whether memory events were internal or external. Consistent with the hippocampal coupling hypothesis, the hippocampus behaved like other DMN regions during retrieval but not during encoding. Taken together, our findings clarify the relationship between the DMN and the neural correlates of memory retrieval and encoding

    Gene-Boosted Assembly of a Novel Bacterial Genome from Very Short Reads

    Get PDF
    Recent improvements in technology have made DNA sequencing dramatically faster and more efficient than ever before. The new technologies produce highly accurate sequences, but one drawback is that the most efficient technology produces the shortest read lengths. Short-read sequencing has been applied successfully to resequence the human genome and those of other species but not to whole-genome sequencing of novel organisms. Here we describe the sequencing and assembly of a novel clinical isolate of Pseudomonas aeruginosa, strain PAb1, using very short read technology. From 8,627,900 reads, each 33 nucleotides in length, we assembled the genome into one scaffold of 76 ordered contiguous sequences containing 6,290,005 nucleotides, including one contig spanning 512,638 nucleotides, plus an additional 436 unordered contigs containing 416,897 nucleotides. Our method includes a novel gene-boosting algorithm that uses amino acid sequences from predicted proteins to build a better assembly. This study demonstrates the feasibility of very short read sequencing for the sequencing of bacterial genomes, particularly those for which a related species has been sequenced previously, and expands the potential application of this new technology to most known prokaryotic species
    corecore