91 research outputs found
Imaging dark matter at the smallest scales with z ≈ 1 lensed stars
Recent observations of caustic-crossing galaxies at redshift 0.7 . z . 1 show a wealth of transient events. Most of them are believed to be microlensing events of highly magnified stars. Earlier work predicts such events should be common near the critical curves (CCs) of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study the combined magnification from the macrolens, millilenses, and microlenses (“3M lensing”), when the macromodel magnification is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region. Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the lens plane determines the number of microlensing events found near and far from the CC. By measuring β (the exponent of the adopted power law LF, dN/dL = φ(L) ∝ (1/L)β), and the number density of microlensing events at each location, one can create a pseudoimage of the underlying distribution of mass on small scales. We identify two regimes: (i) positive-imaging regime where β > 2 and the number density of events is greater around substructures, and (ii) negative-imaging regime where β < 2 and the number density of microlensing events is reduced around substructures. This technique opens a new window to map the distribution of dark-matter substructure down to ∼103 M . We study the particular case of seven microlensing events found in the Flashlights program in the Dragon arc (z = 0.725). A population of supergiant stars having a steep LF with β = 2.55+−007256 fits the distribution of these events in the far and near regions. We also find that the new microlensing events from JWST observations in this arc imply a surface mass density substructure of Σ∗ = 54 M pc−2, consistent with the expected population of stars from the intracluster medium. We identify a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we derive a mass of ∼1.3 × 108 M (within its Einstein radius) in the galaxy cluster
Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays
We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using
360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector.
The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ)
charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which
the pions are from Rho0 decay. The latter case also encompasses exotic
interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho
hypotheses are compatible with our data. Since 3S1 is untenable on other
grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872).
Models for different J/Psi-Rho angular momenta L are considered. Flexibility in
the models, especially the introduction of Rho-Omega interference, enable good
descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let
Top Quark Mass Measurement from Dilepton Events at CDF II with the Matrix-Element Method
We describe a measurement of the top quark mass using events with two charged
leptons collected by the CDF II detector from collisions with TeV at the Fermilab Tevatron. The likelihood in top mass is
calculated for each event by convoluting the leading order matrix element
describing
with detector resolution functions. The presence of background events in the
data sample is modeled using similar calculations involving the matrix elements
for major background processes. In a data sample with integrated luminosity of
340 pb, we observe 33 candidate events and measure This
measurement represents the first application of this method to events with two
charged leptons and is the most precise single measurement of the top quark
mass in this channel.Comment: 21 pages, 14 figure
Search for New Physics in Lepton + Photon + X Events with L=305 pb-1 of ppbar Collisions at roots=1.96 TeV
We present results of a search for anomalous production of events containing
a charged lepton (either electron or muon) and a photon, both with high
transverse momentum, accompanied by additional signatures, X, including missing
transverse energy (MET) and additional leptons and photons. We use the same
kinematic selection criteria as in a previous CDF search, but with a
substantially larger data set, 305 pb-1, a ppbar collision energy of 1.96 TeV,
and the upgraded CDF II detector. We find 42 Lepton+Photon+MET events versus a
standard model expectation of 37.3 +- 5.4 events. The level of excess observed
in Run I, 16 events with an expectation of 7.6 +- 0.7 events (corresponding to
a 2.7 sigma effect), is not supported by the new data. In the signature of
Multi-Lepton+Photon+X we observe 31 events versus an expectation of 23.0 +- 2.7
events. In this sample we find no events with an extra photon or MET and so
find no events like the one ee+gg+MET event observed in Run I.Comment: 7 pages, 3 figures, 1 table. Accepted to PR
Measurement of B(t->Wb)/B(t->Wq) at the Collider Detector at Fermilab
We present a measurement of the ratio of top-quark branching fractions R= B(t
-> Wb)/B(t -> Wq), where q can be a b, s or a d quark, using lepton-plus-jets
and dilepton data sets with integrated luminosity of ~162 pb^{-1} collected
with the Collider Detector at Fermilab during Run II of the Tevatron. The
measurement is derived from the relative numbers of t-tbar events with
different multiplicity of identified secondary vertices. We set a lower limit
of R > 0.61 at 95% confidence level.Comment: 7 pages, 2 figures, published in Physical Review Letters; changes
made to be consistent with published versio
Search for Higgs Boson Decaying to b-bbar and Produced in Association with W Bosons in p-pbar Collisions at sqrt{s}=1.96 TeV
We present a search for Higgs bosons decaying into b-bbar and produced in
association with W bosons in p-pbar collisions at sqrt{s}=1.96 TeV. This search
uses 320 pb-1 of the dataset accumulated by the upgraded Collider Detector at
Fermilab. Events are selected that have a high-transverse momentum electron or
muon, missing transverse energy, and two jets, one of which is consistent with
a hadronization of a b quark. Both the number of events and the dijet mass
distribution are consistent with standard model background expectations, and we
set 95% confidence level upper limits on the production cross section times
branching ratio for the Higgs boson or any new particle with similar decay
kinematics. These upper limits range from 10 pb for mH=110 GeV/c2 to 3 pb for
mH=150 GeV/c2.Comment: 7 pages, 3 figures; updated title to published versio
Measurement of the Inclusive Jet Cross Section using the Kt algorithm in pp-bar Collisions at sqrt(s) = 1.96 TeV
We report on a measurement of the inclusive jet production cross section in
pp-bar collisions at sqrt{s} = 1.96 TeV using data collected with the upgraded
Collider Detector at Fermilab in Run II (CDF II) corresponding to an integrated
luminosity of 385 pb^-1. Jets are reconstructed using the kt algorithm. The
measurement is carried out for jets with rapidity 0.1 < | yjet | < 0.7 and
transverse momentum in the range 54 < ptjet < 700 GeV/c. The measured cross
section is in good agreement with next-to-leading order perturbative QCD
predictions after the necessary non-perturbative parton-to-hadron corrections
are included.Comment: Submitted to Phys. Rev. Let
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Search for ZZ and ZW Production in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a search for ZZ and ZW vector boson pair production in ppbar
collisions at sqrt(s) = 1.96 TeV using the leptonic decay channels ZZ --> ll nu
nu, ZZ --> l l l' l' and ZW --> l l l' nu. In a data sample corresponding to an
integrated luminosity of 194 pb-1 collected with the Collider Detector at
Fermilab, 3 candidate events are found with an expected background of 1.0 +/-
0.2 events. We set a 95% confidence level upper limit of 15.2 pb on the cross
section for ZZ plus ZW production, compared to the standard model prediction of
5.0 +/- 0.4 pb.Comment: 7 pages, 2 figures. This version is accepted for publication by Phys.
Rev. D Rapid Communication
Measurement of the Ratios of Branching Fractions B(Bs->Ds- pi+)/B(B0->D-pi+) and B(B+->D0bar pi+)/B(B0->D-pi+)
We report an observation of the decay Bs -> Ds- pi+ in p pbar collisions at
sqrt(s) = 1.96 TeV using 115 pb^(-1) of data collected by the CDF II detector
at the Fermilab Tevatron. We observe 83 +/- 11 Bs -> Ds- pi+ candidates,
representing a large increase in statistics over previous measurements and the
first observation of this decay at a p pbar collider. We present the first
measurement of the relative branching fraction B(Bs -> Ds- pi+) / B(B0 -> D-
pi+) = 1.32 +/- 0.18 (stat.) +/- 0.38 (syst.). We also measure B(B+ -> D0bar
pi+) / B(B0 -> D- pi+) = 1.97 +/- 0.10(stat.) +/- 0.21(syst.), which is
consistent with previous measurements
- …