690 research outputs found

    Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: results from a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (METS) is an increasingly prevalent but poorly understood clinical condition characterized by insulin resistance, glucose intolerance, dyslipidemia, hypertension, and obesity. Increased oxidative stress catalyzed by accumulation of iron in excess of physiologic requirements has been implicated in the pathogenesis of METS, but the relationships between cause and effect remain uncertain. We tested the hypothesis that phlebotomy-induced reduction of body iron stores would alter the clinical presentation of METS, using a randomized trial.</p> <p>Methods</p> <p>In a randomized, controlled, single-blind clinical trial, 64 patients with METS were randomly assigned to iron reduction by phlebotomy (n = 33) or to a control group (n = 31), which was offered phlebotomy at the end of the study (waiting-list design). The iron-reduction patients had 300 ml of blood removed at entry and between 250 and 500 ml removed after 4 weeks, depending on ferritin levels at study entry. Primary outcomes were change in systolic blood pressure (SBP) and insulin sensitivity as measured by Homeostatic Model Assessment (HOMA) index after 6 weeks. Secondary outcomes included HbA1c, plasma glucose, blood lipids, and heart rate (HR).</p> <p>Results</p> <p>SBP decreased from 148.5 ± 12.3 mmHg to 130.5 ± 11.8 mmHg in the phlebotomy group, and from 144.7 ± 14.4 mmHg to 143.8 ± 11.9 mmHg in the control group (difference -16.6 mmHg; 95% CI -20.7 to -12.5; <it>P </it>< 0.001). No significant effect on HOMA index was seen. With regard to secondary outcomes, blood glucose, HbA1c, low-density lipoprotein/high-density lipoprotein ratio, and HR were significantly decreased by phlebotomy. Changes in BP and HOMA index correlated with ferritin reduction.</p> <p>Conclusions</p> <p>In patients with METS, phlebotomy, with consecutive reduction of body iron stores, lowered BP and resulted in improvements in markers of cardiovascular risk and glycemic control. Blood donation may have beneficial effects for blood donors with METS.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01328210">NCT01328210</a></p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/10/53</url></p

    Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C

    Get PDF
    Hydrocarbons such as CH4 are known to be formed through the Fischer-Tropsch or Sabatier type reactions in hydrothermal systems usually at temperatures above 100°C. Weathering of olivine is sometimes suggested to account for abiotic formation of CH4 through its redox lowering and water splitting properties. Knowledge about the CH4 and H2 formation processes at low temperatures is important for the research about the origin and cause of early Earth and Martian CH4 and for CO2 sequestration. We have conducted a series of low temperature, long-term weathering experiments in which we have tested the CH4 and H2 formation potential of forsteritic olivine

    Self-development groups reduce medical school stress: a controlled intervention study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High stress levels and mental health problems are common among medical students and there is a lack of studies on group interventions that aim to reduce such distress during medical school.</p> <p>Methods</p> <p>A full class of students (n = 129) participated in group sessions during their third year of medical school in Bergen, Norway. The subsequent third-year class (n = 152) acted as control group, in order to create a quasi-experimental design. Two types of group intervention sessions were offered to the first class. One option was self-development groups led by trained group psychotherapists. Alternatively, students could choose discussion groups that focused on themes of special relevance to doctors, led by experienced general practitioners. The intervention comprised of 12 weekly group sessions each lasting 90 minutes. Data were gathered before the intervention (T1), and three months post intervention (T2). Distress was measured using the Perceived Medical School Stress (PMSS) and Symptom Check List-5 (SCL-5) assessments.</p> <p>Results</p> <p>The intervention group showed a significant reduction in PMSS over the observation period. The subsequent year control group stayed on the same PMSS levels over the similar period. The intervention was a significant predictor of PMSS reduction in a multiple regression analysis adjusted for age and sex, β = -1.93 (-3.47 to -0.38), P = 0.02. When we analysed the effects of self-development and discussion groups with the control group as reference, self-development group was the only significant predictor of PMSS reduction, β = -2.18 (-4.03 to -0.33), P = 0.02. There was no interaction with gender in our analysis. This implicates no significant difference between men and women concerning the effect of the self-development group. There was no reduction in general mental distress (SCL-5) over this period.</p> <p>Conclusion</p> <p>A three-month follow-up showed that the intervention had a positive effect on perceived medical school stress among the students, and further analyses showed this was due to participation in self-development groups.</p

    Clinical ethics revisited

    Get PDF
    A decade ago, we reviewed the field of clinical ethics; assessed its progress in research, education, and ethics committees and consultation; and made predictions about the future of the field. In this article, we revisit clinical ethics to examine our earlier observations, highlight key developments, and discuss remaining challenges for clinical ethics, including the need to develop a global perspective on clinical ethics problems

    Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia

    Get PDF
    Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) — the most common chromosomal translocation observed in childhood ALL — which leads to an ETV6–RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, PCMH=8.94 × 10−9, OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10−11, OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10−9, OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10−7, OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6–RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis

    Homology Inference of Protein-Protein Interactions via Conserved Binding Sites

    Get PDF
    The coverage and reliability of protein-protein interactions determined by high-throughput experiments still needs to be improved, especially for higher organisms, therefore the question persists, how interactions can be verified and predicted by computational approaches using available data on protein structural complexes. Recently we developed an approach called IBIS (Inferred Biomolecular Interaction Server) to predict and annotate protein-protein binding sites and interaction partners, which is based on the assumption that the structural location and sequence patterns of protein-protein binding sites are conserved between close homologs. In this study first we confirmed high accuracy of our method and found that its accuracy depends critically on the usage of all available data on structures of homologous complexes, compared to the approaches where only a non-redundant set of complexes is employed. Second we showed that there exists a trade-off between specificity and sensitivity if we employ in the prediction only evolutionarily conserved binding site clusters or clusters supported by only one observation (singletons). Finally we addressed the question of identifying the biologically relevant interactions using the homology inference approach and demonstrated that a large majority of crystal packing interactions can be correctly identified and filtered by our algorithm. At the same time, about half of biological interfaces that are not present in the protein crystallographic asymmetric unit can be reconstructed by IBIS from homologous complexes without the prior knowledge of crystal parameters of the query protein

    Prediction of protein binding sites in protein structures using hidden Markov support vector machine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. Recent research on protein binding site prediction has been mainly based on widely known machine learning techniques, such as artificial neural networks, support vector machines, conditional random field, etc. However, the prediction performance is still too low to be used in practice. It is necessary to explore new algorithms, theories and features to further improve the performance.</p> <p>Results</p> <p>In this study, we introduce a novel machine learning model hidden Markov support vector machine for protein binding site prediction. The model treats the protein binding site prediction as a sequential labelling task based on the maximum margin criterion. Common features derived from protein sequences and structures, including protein sequence profile and residue accessible surface area, are used to train hidden Markov support vector machine. When tested on six data sets, the method based on hidden Markov support vector machine shows better performance than some state-of-the-art methods, including artificial neural networks, support vector machines and conditional random field. Furthermore, its running time is several orders of magnitude shorter than that of the compared methods.</p> <p>Conclusion</p> <p>The improved prediction performance and computational efficiency of the method based on hidden Markov support vector machine can be attributed to the following three factors. Firstly, the relation between labels of neighbouring residues is useful for protein binding site prediction. Secondly, the kernel trick is very advantageous to this field. Thirdly, the complexity of the training step for hidden Markov support vector machine is linear with the number of training samples by using the cutting-plane algorithm.</p

    Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters

    Get PDF
    In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease
    corecore