297 research outputs found
Outsourcing information systems: Drawing lessons from a banking case study
Financial and costs benefits are often put forward as the reasons why organisations decide to outsource.
Emerging patterns and trends indicate that today’s outsourcing decisions are often motivated by factors
other than cost. Thus, the decision-making process is more complex than it may at first appear. This paper
presents findings from a case study from an organisation in the UK banking sector that was motivated to
outsource aspects of its information technology/information system (IT/IS). The underlying motives and
decision-making process that influenced the bank outsource its IT/IS are presented and discussed. Findings
from the case study suggest political perspectives, as well as human and organisational issues influenced
the bank’s strategic decision-making to outsource certain aspects of its business. An examination of the
case study findings suggests that cost alone is not always responsible for decisions to outsource, as it was
found the bank’s outsourcing decision was driven by a series of complex, interrelated motives in a bid to
reduce the risks and uncertainties of managing its own technology. Considering the complex nature of the
outsourcing process a frame of reference that can be used to assist managers with their decision to outsource
IT/IS is propagated. The case study is used to present an organisation’s experiences as to how and why it
decided to outsource its IS and thus offers a learning opportunity for other organisations facing similar
difficulties. In addition, the case study findings highlight the need to focus greater attention on discriminating
between the short and long-term consequences of IT/IS decision-makin
Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire
Understanding the flow of spins in magnetic layered structures has enabled an
increase in data storage density in hard drives over the past decade of more
than two orders of magnitude1. Following this remarkable success, the field of
'spintronics' or spin-based electronics is moving beyond effects based on local
spin polarisation and is turning its attention to spin-orbit interaction (SOI)
effects, which hold promise for the production, detection and manipulation of
spin currents, allowing coherent transmission of information within a device.
While SOI-induced spin transport effects have been observed in two- and
three-dimensional samples, these have been subtle and elusive, often detected
only indirectly in electrical transport or else with more sophisticated
techniques. Here we present the first observation of a predicted 'spin-orbit
gap' in a one-dimensional sample, where counter-propagating spins, constituting
a spin current, are accompanied by a clear signal in the easily-measured linear
conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio
Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation
The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step
Weak Glycolipid Binding of a Microdomain-Tracer Peptide Correlates with Aggregation and Slow Diffusion on Cell Membranes
10.1371/journal.pone.0051222PLoS ONE712
Adenosine A2A receptors: localization and function
Adenosine is an endogenous purine nucleoside present in all mammalian tissues, that originates from the breakdown of ATP. By binding to its four receptor subtypes (A1, A2A, A2B, and A3), adenosine regulates several important physiological functions at both the central and peripheral levels. Therefore, ligands for the different adenosine receptors are attracting increasing attention as new potential drugs to be used in the treatment of several diseases. This chapter is aimed at providing an overview of adenosine metabolism, adenosine receptors localization and their signal transduction pathways. Particular attention will be paid to the biochemistry and pharmacology of A2A receptors, since antagonists of these receptors have emerged as promising new drugs for the treatment of Parkinson's disease. The interactions of A2A receptors with other nonadenosinergic receptors, and the effects of the pharmacological manipulation of A2A receptors on different body organs will be discussed, together with the usefulness of A2A receptor antagonists for the treatment of Parkinson's disease and the potential adverse effects of these drugs
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Increased peri-ductal collagen micro-organization may contribute to raised mammographic density
BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users
New technical approach for the repair of an abdominal wall defect after a transverse rectus abdominis myocutaneous flap: a case report
<p>Abstract</p> <p>Introduction</p> <p>Breast reconstruction with autologous tissue transfer is now a standard operation, but abnormalities of the abdominal wall contour represent a complication which has led surgeons to invent techniques to minimize the morbidity of the donor site.</p> <p>Case presentation</p> <p>We report the case of a woman who had bilateral transverse rectus abdominis myocutaneous flap (TRAM-flap) breast reconstruction. The surgery led to the patient developing an enormous abdominal bulge that caused her disability in terms of abdominal wall and bowel function, pain and contour. In the absence of rectus muscle, the large defect was repaired using a combination of the abdominal wall component separation technique of Ramirez et al and additional mesh augmentation with a lightweight, large-pore polypropylene mesh (Ultrapro<sup>®</sup>).</p> <p>Conclusion</p> <p>The procedure of Ramirez et al is helpful in achieving a tension-free closure of large defects in the anterior abdominal wall. The additional mesh augmentation allows reinforcement of the thinned lateral abdominal wall.</p
Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function
BACKGROUND: Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. RESULTS: We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm(-2), high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. CONCLUSION: Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns
- …
