6 research outputs found

    Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure

    Get PDF
    The Omicron, or Pango lineage B.1.1.529, variant of SARS-CoV-2 carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection from severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple mRNA vaccinated healthcare workers (HCW) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple vaccinated individuals, but magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naĂŻve HCW who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants, but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529

    Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response

    Get PDF
    Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination

    HRMOS White Paper: Science Motivation

    No full text
    The High-Resolution Multi-Object Spectrograph (HRMOS) is a facility instrument that we plan to propose for the Very Large Telescope (VLT) of the European Southern Observatory (ESO), following the initial presentation at the VLT 2030 workshop held at ESO in June 2019. HRMOS provides a combination of capabilities that are essential to carry out breakthrough science across a broad range of active research areas from stellar astrophysics and exoplanet studies to Galactic and Local Group archaeology. HRMOS fills a gap in capabilities amongst the landscape of future instrumentation planned for the next decade. The key characteristics of HRMOS will be high spectral resolution (R = 60000 - 80000) combined with multi-object (20-100) capabilities and long term stability that will provide excellent radial velocity precision and accuracy (10m/s). Initial designs predict that a SNR~100 will be achievable in about one hour for a star with mag(AB) = 15, while with the same exposure time a SNR~ 30 will be reached for a star with mag(AB) = 17. The combination of high resolution and multiplexing with wavelength coverage extending to relatively blue wavelengths (down to 380 nm), makes HRMOS a spectrograph that will push the boundaries of our knowledge and that is envisioned as a workhorse instrument in the future. The science cases presented in this White Paper include topics and ideas developed by the Core Science Team with the contributions from the astronomical community, also through the wide participation in the first HRMOS Workshop (https://indico.ict.inaf.it/event/1547/) that took place in Firenze (Italy) in October 2021

    HRMOS White Paper: Science Motivation

    No full text
    International audienceThe High-Resolution Multi-Object Spectrograph (HRMOS) is a facility instrument that we plan to propose for the Very Large Telescope (VLT) of the European Southern Observatory (ESO), following the initial presentation at the VLT 2030 workshop held at ESO in June 2019. HRMOS provides a combination of capabilities that are essential to carry out breakthrough science across a broad range of active research areas from stellar astrophysics and exoplanet studies to Galactic and Local Group archaeology. HRMOS fills a gap in capabilities amongst the landscape of future instrumentation planned for the next decade. The key characteristics of HRMOS will be high spectral resolution (R = 60000 - 80000) combined with multi-object (20-100) capabilities and long term stability that will provide excellent radial velocity precision and accuracy (10m/s). Initial designs predict that a SNR~100 will be achievable in about one hour for a star with mag(AB) = 15, while with the same exposure time a SNR~ 30 will be reached for a star with mag(AB) = 17. The combination of high resolution and multiplexing with wavelength coverage extending to relatively blue wavelengths (down to 380 nm), makes HRMOS a spectrograph that will push the boundaries of our knowledge and that is envisioned as a workhorse instrument in the future. The science cases presented in this White Paper include topics and ideas developed by the Core Science Team with the contributions from the astronomical community, also through the wide participation in the first HRMOS Workshop (https://indico.ict.inaf.it/event/1547/) that took place in Firenze (Italy) in October 2021
    corecore