95 research outputs found

    Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance

    Full text link
    [EN] Mechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chop-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 +/- 5 d postpartum, 34.63 +/- 2.73 kg/d of milk production; mean +/- SD). The PMN were incubated for 2 h at thermal-neutral (37 degrees C; TN) or heat stress (42 degrees C; HS) temperatures with 3 levels of Chol (0, 400, or 800 mu g/mL) or 3 ratios of Lys:Met (Met; 3.6:1, 2.9:1, or 2.4:1). Supernatant concentrations of IL-1 beta, IL-6, and tumor necrosis factor-alpha were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42 degrees C (HS) relative to 37 degrees C (TN). Data were subjected to ANOVA using PROC MIXED in SAS (SAS Institute Inc., Cary, NC). Orthogonal contrasts were used to determine the linear or quadratic effect of Met and Chol for mRNA fold-change and supernatant cytokine concentrations. Compared with PMN receiving 0 mu g of Chol/mL, heat-stressed PMN supplemented with Chol at 400 or 800 mu g/mL had greater fold-change in abundance of CBS, CSAD, GSS, GSR, and GPX1. Among genes associated with inflammation and immune function, fold-change in abundance of TLR2, TLR4, IRAK1, IL1B, and IL10 increased with 400 and 800 mu g of Chol/mL compared with PMN receiving 0 mu g of Chol/mL. Fold-change in abundance of SAHH decreased linearly at increasing levels of Met supply. A linear effect was detected for MPO, NFKB1, and SOD1 due to greater fold-change in abundance when Met was increased to reach Lys: Met ratios of 2.9:1 and 2.4:1. Although increasing Chol supply upregulated BAX, BCL2, and HSP70, increased Met supply only upregulated BAX. Under HS conditions, enhancing PMN supply of Chol to 400 mu g/mL effectively increased fold-change in abundance of genes involved in antioxidant production (conferring cellular processes protection from free radicals and reactive oxygen species), inflammatory signaling, and innate immunity. Although similar outcomes were obtained with Met supply at Lys:Met ratios of 2.9:1 and 2.4:1, the response was less pronounced. Both Chol and Met supply enhanced the cytoprotective characteristics of PMN through upregulation of heat shock proteins. Overall, the modulatory effects detected in the present experiment highlight an opportunity to use Met and particularly Chol supplementation during thermal stress.M. Vailati-Riboni was supported in part by Hatch funds under project ILLU-538-914, National Institute of Food and Agriculture (Washington, DC). The authors declare no conflict of interest.Lopreiato, V.; Vailati-Riboni, M.; Parys, C.; Fernández Martínez, CJ.; Minuti, A.; Loor, J. (2020). Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance. Journal of Dairy Science. 103(11):10477-10493. https://doi.org/10.3168/jds.2020-18638S104771049310311Abdelmegeid, M. K., Vailati-Riboni, M., Alharthi, A., Batistel, F., & Loor, J. J. (2017). Supplemental methionine, choline, or taurine alter in vitro gene network expression of polymorphonuclear leukocytes from neonatal Holstein calves. Journal of Dairy Science, 100(4), 3155-3165. doi:10.3168/jds.2016-12025Armentano, L. E., Bertics, S. J., & Ducharme, G. A. (1997). Response of Lactating Cows to Methionine or Methionine Plus Lysine Added to High Protein Diets Based on Alfalfa and Heated Soybeans. Journal of Dairy Science, 80(6), 1194-1199. doi:10.3168/jds.s0022-0302(97)76047-8Banerjee, R., Evande, R., Kabil, Ö., Ojha, S., & Taoka, S. (2003). Reaction mechanism and regulation of cystathionine β-synthase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1647(1-2), 30-35. doi:10.1016/s1570-9639(03)00044-xBatistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Baumgard, L. H., & Rhoads, R. P. (2013). Effects of Heat Stress on Postabsorptive Metabolism and Energetics. Annual Review of Animal Biosciences, 1(1), 311-337. doi:10.1146/annurev-animal-031412-103644Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97(1), 471-486. doi:10.3168/jds.2013-6611Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P., Ronchi, B., & Nardone, A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4(7), 1167-1183. doi:10.1017/s175173111000090xBoldyrev, A., Bryushkova, E., Mashkina, A., & Vladychenskaya, E. (2013). Why Is Homocysteine Toxic for the Nervous and Immune Systems? Current Aging Science, 6(1), 29-36. doi:10.2174/18746098112059990007Catozzi, C., Ávila, G., Zamarian, V., Pravettoni, D., Sala, G., Ceciliani, F., … Lecchi, C. (2020). In-vitro effect of heat stress on bovine monocytes lifespan and polarization. Immunobiology, 225(2), 151888. doi:10.1016/j.imbio.2019.11.023Chinenov, Y., Gupte, R., & Rogatsky, I. (2013). Nuclear receptors in inflammation control: Repression by GR and beyond. Molecular and Cellular Endocrinology, 380(1-2), 55-64. doi:10.1016/j.mce.2013.04.006Chorąży, M., Kontny, E., Marcinkiewicz, J., & Maśliński, W. (2002). Amino Acids, 23(4), 407-413. doi:10.1007/s00726-002-0204-0Coleman, D. N., Lopreiato, V., Alharthi, A., & Loor, J. J. (2020). Amino acids and the regulation of oxidative stress and immune function in dairy cattle. Journal of Animal Science, 98(Supplement_1), S175-S193. doi:10.1093/jas/skaa138Collier, R. J., Stiening, C. M., Pollard, B. C., VanBaale, M. J., Baumgard, L. H., Gentry, P. C., & Coussens, P. M. (2006). Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle1. Journal of Animal Science, 84(suppl_13), E1-E13. doi:10.2527/2006.8413_supple1xCouper, K. N., Blount, D. G., & Riley, E. M. (2008). IL-10: The Master Regulator of Immunity to Infection. The Journal of Immunology, 180(9), 5771-5777. doi:10.4049/jimmunol.180.9.5771Del Vesco, A. P., Gasparino, E., Grieser, D. de O., Zancanela, V., Soares, M. A. M., & de Oliveira Neto, A. R. (2015). Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers. British Journal of Nutrition, 113(4), 549-559. doi:10.1017/s0007114514003535Ekremoğlu, M., Türközkan, N., Erdamar, H., Kurt, Y., & Yaman, H. (2006). Protective effect of taurine on respiratory burst activity of polymorphonuclear leukocytes in endotoxemia. Amino Acids, 32(3), 413-417. doi:10.1007/s00726-006-0382-2El-Benna, J., Hurtado-Nedelec, M., Marzaioli, V., Marie, J.-C., Gougerot-Pocidalo, M.-A., & Dang, P. M.-C. (2016). Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunological Reviews, 273(1), 180-193. doi:10.1111/imr.12447Esposito, G., Irons, P. C., Webb, E. C., & Chapwanya, A. (2014). Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Animal Reproduction Science, 144(3-4), 60-71. doi:10.1016/j.anireprosci.2013.11.007Fear, J. M., & Hansen, P. J. (2011). Developmental Changes in Expression of Genes Involved in Regulation of Apoptosis in the Bovine Preimplantation Embryo1. Biology of Reproduction, 84(1), 43-51. doi:10.1095/biolreprod.110.086249Gao, S. T., Guo, J., Quan, S. Y., Nan, X. M., Fernandez, M. V. S., Baumgard, L. H., & Bu, D. P. (2017). The effects of heat stress on protein metabolism in lactating Holstein cows. Journal of Dairy Science, 100(6), 5040-5049. doi:10.3168/jds.2016-11913Han, Z.-Y., Mu, T., & Yang, Z. (2014). Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells. Cell Stress and Chaperones, 20(1), 109-120. doi:10.1007/s12192-014-0530-7Heiser, A., LeBlanc, S. J., & McDougall, S. (2018). Pegbovigrastim treatment affects gene expression in neutrophils of pasture-fed, periparturient cows. Journal of Dairy Science, 101(9), 8194-8207. doi:10.3168/jds.2017-14129Horowitz, M. (2001). Heat acclimation: phenotypic plasticity and cues to the underlying molecular mechanisms. Journal of Thermal Biology, 26(4-5), 357-363. doi:10.1016/s0306-4565(01)00044-4Hunter-Lavin, C., Davies, E. L., Bacelar, M. M. F. V. G., Marshall, M. J., Andrew, S. M., & Williams, J. H. H. (2004). Hsp70 release from peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications, 324(2), 511-517. doi:10.1016/j.bbrc.2004.09.075Ingvartsen, K. L., & Moyes, K. (2013). Nutrition, immune function and health of dairy cattle. Animal, 7, 112-122. doi:10.1017/s175173111200170xJoshi, B. C., Joshi, H. B., McDowell, R. E., & Sadhu, D. P. (1968). Composition of Skin Secretions from Three Indian Breeds of Cattle Under Thermal Stress. Journal of Dairy Science, 51(6), 917-920. doi:10.3168/jds.s0022-0302(68)87105-xKobayashi, S. D., & DeLeo, F. R. (2009). Role of neutrophils in innate immunity: a systems biology‐level approach. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 1(3), 309-333. doi:10.1002/wsbm.32Kumar, H., Kawai, T., & Akira, S. (2011). Pathogen Recognition by the Innate Immune System. International Reviews of Immunology, 30(1), 16-34. doi:10.3109/08830185.2010.529976Lacetera, N., Bernabucci, U., Basiricò, L., Morera, P., & Nardone, A. (2009). Heat shock impairs DNA synthesis and down-regulates gene expression for leptin and Ob-Rb receptor in concanavalin A-stimulated bovine peripheral blood mononuclear cells. Veterinary Immunology and Immunopathology, 127(1-2), 190-194. doi:10.1016/j.vetimm.2008.09.020Lacetera, N., Bernabucci, U., Scalia, D., Basiricò, L., Morera, P., & Nardone, A. (2006). Heat Stress Elicits Different Responses in Peripheral Blood Mononuclear Cells from Brown Swiss and Holstein Cows. Journal of Dairy Science, 89(12), 4606-4612. doi:10.3168/jds.s0022-0302(06)72510-3Lecchi, C., Rota, N., Vitali, A., Ceciliani, F., & Lacetera, N. (2016). In vitro assessment of the effects of temperature on phagocytosis, reactive oxygen species production and apoptosis in bovine polymorphonuclear cells. Veterinary Immunology and Immunopathology, 182, 89-94. doi:10.1016/j.vetimm.2016.10.007Loos, H., Roos, D., Weening, R., & Houwerzijl, J. (1976). Familial deficiency of glutathione reductase in human blood cells. Blood, 48(1), 53-62. doi:10.1182/blood.v48.1.53.53Lopreiato, V., Vailati-Riboni, M., Bellingeri, A., Khan, I., Farina, G., Parys, C., & Loor, J. J. (2019). Inflammation and oxidative stress transcription profiles due to in vitro supply of methionine with or without choline in unstimulated blood polymorphonuclear leukocytes from lactating Holstein cows. Journal of Dairy Science, 102(11), 10395-10410. doi:10.3168/jds.2019-16413Lubos, E., Loscalzo, J., & Handy, D. E. (2011). Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants & Redox Signaling, 15(7), 1957-1997. doi:10.1089/ars.2010.3586Lushchak, V. I. (2012). Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. Journal of Amino Acids, 2012, 1-26. doi:10.1155/2012/736837McGuire, M. A., Beede, D. K., DeLorenzo, M. A., Wilcox, C. J., Huntington, G. B., Reynolds, C. K., & Collier, R. J. (1989). Effects of Thermal Stress and Level of Feed Intake on Portal Plasma Flow and Net Fluxes of Metabolites in Lactating Holstein Cows2,3. Journal of Animal Science, 67(4), 1050-1060. doi:10.2527/jas1989.6741050xMin, L., Zheng, N., Zhao, S., Cheng, J., Yang, Y., Zhang, Y., … Wang, J. (2016). Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis. Biochemical and Biophysical Research Communications, 471(2), 296-302. doi:10.1016/j.bbrc.2016.01.185Moyes, K. M., Drackley, J. K., Morin, D. E., & Loor, J. J. (2010). Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. Functional & Integrative Genomics, 10(1), 53-61. doi:10.1007/s10142-009-0154-7Moyes, K. M., Graugnard, D. E., Khan, M. J., Mukesh, M., & Loor, J. J. (2014). Postpartal immunometabolic gene network expression and function in blood neutrophils are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 97(4), 2165-2177. doi:10.3168/jds.2013-7433Nakamura, M. (2000). Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovascular Research, 45(3), 661-670. doi:10.1016/s0008-6363(99)00393-4Oeckinghaus, A., & Ghosh, S. (2009). The NF- B Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1(4), a000034-a000034. doi:10.1101/cshperspect.a000034Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2014). Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. Journal of Dairy Science, 97(12), 7451-7464. doi:10.3168/jds.2014-8680Salama, A. A. K., Duque, M., Wang, L., Shahzad, K., Olivera, M., & Loor, J. J. (2019). Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. Journal of Dairy Science, 102(3), 2469-2480. doi:10.3168/jds.2018-15219Schell, M. T., Spitzer, A. L., Johnson, J. A., Lee, D., & Harris, H. W. (2005). Heat Shock Inhibits NF-kB Activation in a Dose- and Time-Dependent Manner. Journal of Surgical Research, 129(1), 90-93. doi:10.1016/j.jss.2005.05.025Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1-2), 1-18. doi:10.1016/s0301-6226(00)00162-7Stankiewicz, A. R., Lachapelle, G., Foo, C. P. Z., Radicioni, S. M., & Mosser, D. D. (2005). Hsp70 Inhibits Heat-induced Apoptosis Upstream of Mitochondria by Preventing Bax Translocation. Journal of Biological Chemistry, 280(46), 38729-38739. doi:10.1074/jbc.m509497200Steel, G. J., Fullerton, D. M., Tyson, J. R., & Stirling, C. J. (2004). Coordinated Activation of Hsp70 Chaperones. Science, 303(5654), 98-101. doi:10.1126/science.1092287Sun, D., Chen, D., Du, B., & Pan, J. (2005). Heat Shock Response Inhibits NF-κB Activation and Cytokine Production in Murine Kupffer Cells. Journal of Surgical Research, 129(1), 114-121. doi:10.1016/j.jss.2005.05.028Taraktsoglou, M., Szalabska, U., Magee, D. A., Browne, J. A., Sweeney, T., Gormley, E., & MacHugh, D. E. (2011). Transcriptional profiling of immune genes in bovine monocyte-derived macrophages exposed to bacterial antigens. Veterinary Immunology and Immunopathology, 140(1-2), 130-139. doi:10.1016/j.vetimm.2010.12.002Trevisi, E., Jahan, N., Bertoni, G., Ferrari, A., & Minuti, A. (2015). Pro-Inflammatory Cytokine Profile in Dairy Cows: Consequences for New Lactation. Italian Journal of Animal Science, 14(3), 3862. doi:10.4081/ijas.2015.3862Tsan, M.-F., & Gao, B. (2004). Cytokine function of heat shock proteins. American Journal of Physiology-Cell Physiology, 286(4), C739-C744. doi:10.1152/ajpcell.00364.2003Vailati-Riboni, M., Zhou, Z., Jacometo, C. B., Minuti, A., Trevisi, E., Luchini, D. N., & Loor, J. J. (2017). Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. Journal of Dairy Science, 100(5), 3958-3968. doi:10.3168/jds.2016-11812Yan, J., Meng, X., Wancket, L. M., Lintner, K., Nelin, L. D., Chen, B., … Liu, Y. (2012). Glutathione Reductase Facilitates Host Defense by Sustaining Phagocytic Oxidative Burst and Promoting the Development of Neutrophil Extracellular Traps. The Journal of Immunology, 188(5), 2316-2327. doi:10.4049/jimmunol.1102683Zhou, Z., Bulgari, O., Vailati-Riboni, M., Trevisi, E., Ballou, M. A., Cardoso, F. C., … Loor, J. J. (2016). Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. Journal of Dairy Science, 99(11), 8956-8969. doi:10.3168/jds.2016-10986Zhou, Z., Ferdous, F., Montagner, P., Luchini, D. N., Corrêa, M. N., & Loor, J. J. (2018). Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. Journal of Dairy Science, 101(11), 10374-10382. doi:10.3168/jds.2018-14972Zhou, Z., Vailati-Riboni, M., Trevisi, E., Drackley, J. K., Luchini, D. N., & Loor, J. J. (2016). Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. Journal of Dairy Science, 99(11), 8716-8732. doi:10.3168/jds.2015-1052

    Can lipid supplementation modulate inflammatory state and immune response in periparturient goats? A case study on hepatic and adipose miRNA expression

    Get PDF
    As a new perspective in controlling cellular pathways, the aim of the trial was to investigate the expression of miRNA implicated in adipogenesis and metabolic and endocrine functions in periparturient dairy goat fed saturated or unsaturated fatty acids. Hepatic and adipose tissue samples were obtained from twenty-three second-parity twins-diagnosed alpine dairy goats were fed either calcium stearate (ST, n:7), fish oil (FO, n:8) or a control diet without any fat supplement (C, n:8). Dietary treatments lasted from one week before (30g/head/d of fatty acids) to three weeks after kidding (50g/head/d of fatty acids). ST provided 26% C16:0 and 69.4% C18:0 while FO provided 10.4% EPA and 7.8% DHA. The expression of miR-26b and 155 (adipose infiltration of immune cells), miR-99a, 145 and 221 (inflammation and lipolysis) and miR-143 and 378 (pro-adipogenic function) was performed by RT-PCR on hepatic and adipose biopsies collected on day -7 and 7 and 21 from kidding. Data were statistically analyzed by MIXED and GLM procedures of SAS. No diet effect was found for all the miRNA considered, but a significant effect of time for miR-155 (P= 0.028) and a tendency for miR-221 (P=0.083) were found with increased values from -7 to +21d. In particular, significant higher miR-155 expression (P<0.01) from -7 to 7d (-0.17 and 0.27, respectively) proved an inflammatory status in the first week after kidding in all the groups. Obtained results for both miRNA-155 and miRNA-221 over the time copes with our previous findings on metabolic, productive parameters and mRNA expression of genes related to lipid metabolism and inflammatory response (Farina et al., 2016). These outcomes consolidate the hypothesis that lipogenesis takes place in dairy goat in the two weeks around calving, but it is reduced when compared to dairy cow (Khan et al., 2013)

    Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows

    Full text link
    [EN] Peripartal cows mobilize not only body fat but also body protein to satisfy their energy requirements. The objective of this study was to determine the effect of prepartum BCS on blood biomarkers related to energy and nitrogen metabolism, and mRNA and protein abundance associated with AA metabolism and insulin signaling in subcutaneous adipose tissue (SAT) in peripartal cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS >= 3.5) or normal BCS (NBCS; n = 11, BCS <= 3.17) group at d 28 before expected parturition. Cows were fed the same diet as a total mixed ration before parturition and were fed the same lactation diet postpartum. Blood samples collected at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with energy and nitrogen metabolism. Biopsies of SAT harvested at -15, 7, and 30 d relative to parturition were used for mRNA (real timePCR) and protein abundance (Western blotting) assays. Data were subjected to ANOVA using the MIXED procedure of SAS (v. 9.4; SAS institute Inc., Cary, NC), with P <= 0.05 being the threshold for significance. Cows in HBCS had greater overall plasma nonesterified fatty acid concentrations, due to marked increases at 7 and 15 d postpartum. This response was similar (BCS x Day effect) to protein abundance of phosphorylated (p) protein kinase B (p-AKT), the insulin-induced glucose transporter (SLC2A4), and the sodium-coupled neutral AA transporter (SLC38A1). Abundance of these proteins was lower at -15 d compared with NBCS cows, and either increased (SLC2A4, SLC38A1) or did not change (p-AKT) at 7 d postpartum in IIBCS. Unlike protein abundance, however, overall mRNA abundances of the high-affinity cationic (SLC7A1), proton-coupled (SLC96A1), and sodium-coupled amino acid transporters (SLC,98,42) were greater in IIBCS than NBCS cows, due to upregulation in the postpartum phase. Those responses were similar to protein abundance of p-mTOR, which increased (BCS x Day effect) at 7 d in HBCS compared with NBCS cows. mRNA abundance of argininosuccinate lyase (ASL) and arginase 1 (ARG1) also was greater overall in HBCS cows. Together, these responses suggested impaired insulin signaling, coupled with greater postpartum AA transport rate and urea cycle activity in SAT of HBCS cows. An in vitro study using adipocyte and macrophage cocultures stimulated with various concentrations of fatty acids could provide some insights into the role of immune cells in modulating adipose tissue immunometabolic status, including insulin resistance and AA metabolism.Y. Liang is a recipient of a doctoral fellowship from the China Scholarship Council (CSC, Beijing, China) to perform his PhD studies at the University of Illinois (Urbana). A. S. Alharthi received a fellowship from King Saud University (Riyadh, Saudi Arabia) to perform his PhD studies at the University of Illinois (Urbana). A. A. Elolimy was recipient of a fellowship from the Higher Education Ministry (Cairo, Egypt) to perform his PhD studies at the University of Illinois (Urbana). We thank Perdue AgriBusiness (Salisbury, MD) for the donation of ProvAAL2 AADvantage during the course of the experiment. The authors declare no conflicts of interest.Liang, Y.; Alharthi, A.; Elolimy, A.; Bucktrout, R.; Lopreiato, V.; Cortes, I.; Xu, C.... (2020). Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows. Journal of Dairy Science. 103(11):10459-10476. https://doi.org/10.3168/jds.2020-18612S104591047610311Akter, S. H., Häussler, S., Germeroth, D., von Soosten, D., Dänicke, S., Südekum, K.-H., & Sauerwein, H. (2012). Immunohistochemical characterization of phagocytic immune cell infiltration into different adipose tissue depots of dairy cows during early lactation. Journal of Dairy Science, 95(6), 3032-3044. doi:10.3168/jds.2011-4856Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1Appuhamy, J. A. D. R. N., Knoebel, N. A., Nayananjalie, W. A. D., Escobar, J., & Hanigan, M. D. (2012). Isoleucine and Leucine Independently Regulate mTOR Signaling and Protein Synthesis in MAC-T Cells and Bovine Mammary Tissue Slices. The Journal of Nutrition, 142(3), 484-491. doi:10.3945/jn.111.152595Arriarán, S., Agnelli, S., Remesar, X., Fernández-López, J.-A., & Alemany, M. (2015). The urea cycle of rat white adipose tissue. RSC Advances, 5(113), 93403-93414. doi:10.1039/c5ra16398fBatistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185Bauchart-Thevret, C., Cui, L., Wu, G., & Burrin, D. G. (2010). Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. American Journal of Physiology-Endocrinology and Metabolism, 299(6), E899-E909. doi:10.1152/ajpendo.00068.2010Bewley, J. M., & Schutz, M. M. (2008). An Interdisciplinary Review of Body Condition Scoring for Dairy Cattle. The Professional Animal Scientist, 24(6), 507-529. doi:10.15232/s1080-7446(15)30901-3Bionaz, M., Chen, S., Khan, M. J., & Loor, J. J. (2013). Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation. PPAR Research, 2013, 1-28. doi:10.1155/2013/684159Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445Burgos, S. A., Dai, M., & Cant, J. P. (2010). Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway. Journal of Dairy Science, 93(1), 153-161. doi:10.3168/jds.2009-2444Busato, A., Faissler, D., Kupfer, U., & Blum, J. W. (2002). Body Condition Scores in Dairy Cows: Associations with Metabolic and Endocrine Changes in Healthy Dairy Cows. Journal of Veterinary Medicine Series A, 49(9), 455-460. doi:10.1046/j.1439-0442.2002.00476.xCai, H., Dong, L. Q., & Liu, F. (2016). Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends in Pharmacological Sciences, 37(4), 303-317. doi:10.1016/j.tips.2015.11.011Caroprese, M., Albenzio, M., Marino, R., Santillo, A., & Sevi, A. (2012). Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine. Research in Veterinary Science, 93(1), 202-209. doi:10.1016/j.rvsc.2011.07.015Closs, E. I., Boissel, J.-P., Habermeier, A., & Rotmann, A. (2006). Structure and Function of Cationic Amino Acid Transporters (CATs). Journal of Membrane Biology, 213(2), 67-77. doi:10.1007/s00232-006-0875-7Contreras, G. A., Kabara, E., Brester, J., Neuder, L., & Kiupel, M. (2015). Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum. Journal of Dairy Science, 98(9), 6176-6187. doi:10.3168/jds.2015-9370Cynober, L., Boucher, J. L., & Vasson, M.-P. (1995). Arginine metabolism in mammals. The Journal of Nutritional Biochemistry, 6(8), 402-413. doi:10.1016/0955-2863(95)00066-9Dann, H. M., Morin, D. E., Bollero, G. A., Murphy, M. R., & Drackley, J. K. (2005). Prepartum Intake, Postpartum Induction of Ketosis, and Periparturient Disorders Affect the Metabolic Status of Dairy Cows. Journal of Dairy Science, 88(9), 3249-3264. doi:10.3168/jds.s0022-0302(05)73008-3De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318De Koster, J., Urh, C., Hostens, M., Van den Broeck, W., Sauerwein, H., & Opsomer, G. (2017). Relationship between serum adiponectin concentration, body condition score, and peripheral tissue insulin response of dairy cows during the dry period. Domestic Animal Endocrinology, 59, 100-104. doi:10.1016/j.domaniend.2016.12.004De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777Durante, W. (2013). Role of Arginase in Vessel Wall Remodeling. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00111Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0Frayn, K. N., Khan, K., Coppack, S. W., & Elia, M. (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science, 80(5), 471-474. doi:10.1042/cs0800471Ghaffari, M. H., Sadri, H., Schuh, K., Dusel, G., Frieten, D., Koch, C., … Sauerwein, H. (2019). Biogenic amines: Concentrations in serum and skeletal muscle from late pregnancy until early lactation in dairy cows with high versus normal body condition score. Journal of Dairy Science, 102(7), 6571-6586. doi:10.3168/jds.2018-16034Ghaffari, M. H., Schuh, K., Dusel, G., Frieten, D., Koch, C., Prehn, C., … Sadri, H. (2019). Mammalian target of rapamycin signaling and ubiquitin-proteasome–related gene expression in skeletal muscle of dairy cows with high or normal body condition score around calving. Journal of Dairy Science, 102(12), 11544-11560. doi:10.3168/jds.2019-17130Ghaffari, M. H., Jahanbekam, A., Sadri, H., Schuh, K., Dusel, G., Prehn, C., … Sauerwein, H. (2019). Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis. Journal of Dairy Science, 102(12), 11561-11585. doi:10.3168/jds.2019-17114Gonzalez, E., & McGraw, T. E. (2009). Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proceedings of the National Academy of Sciences, 106(17), 7004-7009. doi:10.1073/pnas.0901933106González, F. D., Muiño, R., Pereira, V., Campos, R., & Benedito, J. L. (2011). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. Journal of Veterinary Science, 12(3), 251. doi:10.4142/jvs.2011.12.3.251Häussler, S., Germeroth, D., Laubenthal, L., Ruda, L. F., Rehage, J., Dänicke, S., & Sauerwein, H. (2017). Short Communication: Immunohistochemical localization of the immune cell marker CD68 in bovine adipose tissue: impact of tissue alterations and excessive fat accumulation in dairy cows. Veterinary Immunology and Immunopathology, 183, 45-48. doi:10.1016/j.vetimm.2016.12.005Horie, T., Fukasawa, K., Iezaki, T., Park, G., Onishi, Y., Ozaki, K., … Hinoi, E. (2017). Hypoxic Stress Upregulates the Expression of Slc38a1 in Brown Adipocytes via Hypoxia-Inducible Factor-1α. Pharmacology, 101(1-2), 64-71. doi:10.1159/000480405Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., … Shimomura, I. (2007). Adipose Tissue Hypoxia in Obesity and Its Impact on Adipocytokine Dysregulation. Diabetes, 56(4), 901-911. doi:10.2337/db06-0911Hu, H., Moon, J., Chung, J. H., Kim, O. Y., Yu, R., & Shin, M.-J. (2015). Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity. Biochemical and Biophysical Research Communications, 464(3), 840-847. doi:10.1016/j.bbrc.2015.07.048Ibrahim, M. M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews, 11(1), 11-18. doi:10.1111/j.1467-789x.2009.00623.xJafari, A., Emmanuel, D. G. V., Christopherson, R. J., Thompson, J. R., Murdoch, G. K., Woodward, J., … Ametaj, B. N. (2006). Parenteral Administration of Glutamine Modulates Acute Phase Response in Postparturient Dairy Cows. Journal of Dairy Science, 89(12), 4660-4668. doi:10.3168/jds.s0022-0302(06)72516-4Jager, J., Grémeaux, T., Cormont, M., Le Marchand-Brustel, Y., & Tanti, J.-F. (2007). Interleukin-1β-Induced Insulin Resistance in Adipocytes through Down-Regulation of Insulin Receptor Substrate-1 Expression. Endocrinology, 148(1), 241-251. doi:10.1210/en.2006-0692Jamali Emam Gheise, N., Riasi, A., Zare Shahneh, A., Celi, P., & Ghoreishi, S. M. (2017). Effect of pre-calving body condition score and previous lactation on BCS change, blood metabolites, oxidative stress and milk production in Holstein dairy cows. Italian Journal of Animal Science, 16(3), 474-483. doi:10.1080/1828051x.2017.1290507Janovick, N. A., Boisclair, Y. R., & Drackley, J. K. (2011). Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science, 94(3), 1385-1400. doi:10.3168/jds.2010-3303Javed, K., & Fairweather, S. J. (2019). Amino acid transporters in the regulation of insulin secretion and signalling. Biochemical Society Transactions, 47(2), 571-590. doi:10.1042/bst20180250Ji, P., Drackley, J. K., Khan, M. J., & Loor, J. J. (2014). Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows. Journal of Dairy Science, 97(6), 3441-3448. doi:10.3168/jds.2013-7296Ji, P., Drackley, J. K., Khan, M. J., & Loor, J. J. (2014). Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows. Journal of Dairy Science, 97(6), 3431-3440. doi:10.3168/jds.2013-7295Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079Kanda, H. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. Journal of Clinical Investigation, 116(6), 1494-1505. doi:10.1172/jci26498Kenéz, Á., Ruda, L., Dänicke, S., & Huber, K. (2019). Insulin signaling and insulin response in subcutaneous and retroperitoneal adipose tissue in Holstein cows during the periparturient period. Journal of Dairy Science, 102(12), 11718-11729. doi:10.3168/jds.2019-16873Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122(20), 3589-3594. doi:10.1242/jcs.051011Laubenthal, L., Ruda, L., Sultana, N., Winkler, J., Rehage, J., Meyer, U., … Häussler, S. (2017). Effect of increasing body condition on oxidative stress and mitochondrial biogenesis in subcutaneous adipose tissue depot of nonlactating dairy cows. Journal of Dairy Science, 100(6), 4976-4986. doi:10.3168/jds.2016-12356Le Floc’h, N., Melchior, D., & Obled, C. (2004). Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livestock Production Science, 87(1), 37-45. doi:10.1016/j.livprodsci.2003.09.005Li, Y., Wei, H., Li, F., Chen, S., Duan, Y., Guo, Q., … Yin, Y. (2016). Supplementation of branched-chain amino acids in protein-restricted diets modulates the expression levels of amino acid transporters and energy metabolism associated regulators in the adipose tissue of growing pigs. Animal Nutrition, 2(1), 24-32. doi:10.1016/j.aninu.2016.01.003Liang, Y., Alharthi, A. S., Bucktrout, R., Elolimy, A. A., Lopreiato, V., Martinez-Cortés, I., … Loor, J. J. (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)–related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science, 103(7), 6439-6453. doi:10.3168/jds.2019-17813Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Methionine supply during the periparturient period enhances insulin signaling, amino acid transporters, and mechanistic target of rapamycin pathway proteins in adipose tissue of Holstein cows. Journal of Dairy Science, 102(5), 4403-4414. doi:10.3168/jds.2018-15738Liao, W., Nguyen, M. T. A., Yoshizaki, T., Favelyukis, S., Patsouris, D., Imamura, T., … Olefsky, J. M. (2007). Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 293(1), E219-E227. doi:10.1152/ajpendo.00695.2006Locher, L. F., Meyer, N., Weber, E.-M., Rehage, J., Meyer, U., Dänicke, S., & Huber, K. (2011). Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow. Journal of Dairy Science, 94(9), 4514-4523. doi:10.3168/jds.2011-4145Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047Mackenzie, B., & Erickson, J. D. (2004). Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pfl�gers Archiv European Journal of Physiology, 447(5), 784-795. doi:10.1007/s00424-003-1117-9Mann, S., Nydam, D. V., Abuelo, A., Leal Yepes, F. A., Overton, T. R., & Wakshlag, J. J. (2016). Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet. Journal of Dairy Science, 99(8), 6737-6752. doi:10.3168/jds.2016-10969Megahed, A. A., Hiew, M. W. H., Ragland, D., & Constable, P. D. (2019). Changes in skeletal muscle thickness and echogenicity and plasma creatinine concentration as indicators of protein and intramuscular fat mobilization in periparturient dairy cows. Journal of Dairy Science, 102(6), 5550-5565. doi:10.3168/jds.2018-15063Menchini, R. J., & Chaudhry, F. A. (2019). Multifaceted regulation of the system A transporter Slc38a2 suggests nanoscale regulation of amino acid metabolism and cellular signaling. Neuropharmacology, 161, 107789. doi:10.1016/j.neuropharm.2019.107789Minuti, A., Bionaz, M., Lopreiato, V., Janovick, N. A., Rodriguez-Zas, S. L., Drackley, J. K., & Loor, J. J. (2020). Prepartum dietary energy intake alters adipose tissue transcriptome profiles during the periparturient period in Holstein dairy cows. Journal of Animal Science and Biotechnology, 11(1). doi:10.1186/s40104-019-0409-7Moisá, S. J., Ji, P., Drackley, J. K., Rodriguez-Zas, S. L., & Loor, J. J. (2017). Transcriptional changes in mesenteric and subcutaneous adipose tissue from Holstein cows in response to plane of dietary energy. Journal of Animal Science and Biotechnology, 8(1). doi:10.1186/s40104-017-0215-zMoyes, K. M., Drackley, J. K., Morin, D. E., & Loor, J. J. (2010). Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. Functional & Integrative Genomics, 10(1), 53-61. doi:10.1007/s10142-009-0154-7Mukesh, M., Bionaz, M., Graugnard, D. E., Drackley, J. K., & Loor, J. J. (2010). Adipose tissue depots of Holstein cows are immune responsive: Inflammatory gene expression in vitro. Domestic Animal Endocrinology, 38(3), 168-178. doi:10.1016/j.domaniend.2009.10.001Newgard, C. B. (2017). Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metabolism, 25(1), 43-56. doi:10.1016/j.cmet.2016.09.018Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., … Svetkey, L. P. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, 9(4), 311-326. doi:10.1016/j.cmet.2009.02.002Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.

    Transcriptional regulation of lipid metabolism and inflammation in transition dairy goats by fish oil and stearate

    Get PDF
    To better understand the interaction between saturated or unsaturated fatty acids and its effect on expression of genes involved in subcutaneous adipose tissue metabolism, 23 second parity alpine dairy goats were enrolled in the experiment and fed either a non fat-supplemented basal diet (C; n=8), the basal diet supplemented with stearic acid (ST; n=7) or the basal diet supplemented with fish oil (FO; n=8). 30g/head/d supplemental fatty acids during the dry period and 50g/head/d during lactation were delivered starting one week before parturition up to 21 days in milk. Subcutaneous adipose tissue samples were harvested at day -7, 7 and 21 relative to kidding and mRNA levels of genes involved in inflammation were measured via qPCR. Data were analyzed using the MIXED procedure of SAS. No significant effects for treatment were observed, however eight genes were significant for time. HP and SAA3 expression peaked at day 7 postpartum, to then return at prepartum level around 21 d relative to kidding, while IL8, IL10, and IL18 expression constantly increased along the transition period. Vice versa, expression of IL1\u3b2, IL6R, and RXRA decreased in response to kidding, with a subsequent increase at day 21. The obtained results led us to hypothesize that goats face a postponed lipomobilization after kidding, probably related to their reduced production. The next step will involve the analysis of miRNA related to immune cell infiltration, adipocyte inflammation and lipolysis and positive regulation of adipogenesis to better understand the complex network of lipid metabolism in periparturient goats

    Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows

    Full text link
    [EN] Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated the effect of precalving BCS on blood biomarkers associated with OS, inflammation, and liver function, along with mRNA and protein abundance of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ¿3.5) or normal BCS (NBCS; n = 11, BCS ¿3.17) on d 28 before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration during late prepartum, and a corn silage- and alfalfa hay-based total mixed ration postpartum. Blood samples obtained at ¿10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with inflammation, including albumin, ceruloplasmin, haptoglobin, and myeloperoxidase, as well as OS, including ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), and ß-carotene. Adipose biopsies harvested at ¿15, 7, and 30 d relative to parturition were analyzed for mRNA (real-time quantitative PCR) and protein abundance (Western blotting) of targets associated with the antioxidant transcription regulator nuclear factor, NFE2L2, and GSH metabolism pathway. In addition, concentrations of GSH, ROS and malondialdehyde were measured. High BCS cows had lower prepartum dry matter intake expressed as a percentage of body weight along with greater BCS loss between ¿4 and 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased after parturition regardless of treatment. Compared with NBCS, HBCS cows had greater concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In addition, NBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while HBCS cows maintained a constant concentration by d 30 postpartum. Overall, ROS concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, ratio of phosphorylated NFE2L2 to total NFE2L2 was lower, suggesting a decrease in the activity of this antioxidant system. Overall, mRNA abundance of the GSH metabolism-related genes glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), and transaldolase 1 (TALDO1), along with protein abundance of glutathione S-transferase mu 1 (GSTM1), were greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS after parturition, while increased abundance of mRNA and protein components of the GSH metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT during the periparturient period via nutrition might help control tissue remodeling while allowing optimal performance.Y. Liang is a recipient of a doctoral fellowship from China Scholarship Council (CSC, Beijing, China). A. S. Alharthi received a fellowship from King Saud University to perform his PhD studies at the University of Illinois (Urbana). A. A. Elolimy was recipient of a fellowship from Higher Education Ministry, Egypt to perform his Ph.D. studies at the University of Illinois (Urbana). We thank Perdue AgriBusiness (Salisbury, MD) for the donation of ProvAAL2 AADvantage during the course of the experiment. The authors have not stated any conflicts of interest.Liang, Y.; Alharthi, A.; Bucktrout, R.; Elolimy, A.; Lopreiato, V.; Martinez-Cortes, I.; Xu, C.... (2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. Journal of Dairy Science. 103(7):6439-6453. https://doi.org/10.3168/jds.2019-17813S643964531037Alharthi, A., Zhou, Z., Lopreiato, V., Trevisi, E., & Loor, J. J. (2018). Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-017-0221-1Aquilano, K., Baldelli, S., & Ciriolo, M. R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology, 5. doi:10.3389/fphar.2014.00196Arias, E., González, A., Shimada, A., Varela-Echavarria, A., Ruiz-López, F., During, A., & Mora, O. (2009). β-Carotene is incorporated or mobilized along with triglycerides in bovine adipose tissue in response to insulin or epinephrine. Journal of Animal Physiology and Animal Nutrition, 93(1), 83-93. doi:10.1111/j.1439-0396.2007.00783.xBatistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2005). Influence of Body Condition Score on Relationships Between Metabolic Status and Oxidative Stress in Periparturient Dairy Cows. Journal of Dairy Science, 88(6), 2017-2026. doi:10.3168/jds.s0022-0302(05)72878-2Bertoni, G., Trevisi, E., Han, X., & Bionaz, M. (2008). Effects of Inflammatory Conditions on Liver Activity in Puerperium Period and Consequences for Performance in Dairy Cows. Journal of Dairy Science, 91(9), 3300-3310. doi:10.3168/jds.2008-0995Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., & Bertoni, G. (2007). Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. Journal of Dairy Science, 90(4), 1740-1750. doi:10.3168/jds.2006-445Bozinovski, S., Seow, H. J., Crack, P. J., Anderson, G. P., & Vlahos, R. (2012). Glutathione Peroxidase-1 Primes Pro-Inflammatory Cytokine Production after LPS Challenge In Vivo. PLoS ONE, 7(3), e33172. doi:10.1371/journal.pone.0033172Buelna-Chontal, M., & Zazueta, C. (2013). Redox activation of Nrf2 & NF-κB: A double end sword? Cellular Signalling, 25(12), 2548-2557. doi:10.1016/j.cellsig.2013.08.007Cerón,, J. J., Eckersall,, P. D., & Martínez-Subiela, S. (2005). Acute phase proteins in dogs and cats: current knowledge and future perspectives. Veterinary Clinical Pathology, 34(2), 85-99. doi:10.1111/j.1939-165x.2005.tb00019.xCohen, G., & Hochstein, P. (1963). Glutathione Peroxidase: The Primary Agent for the Elimination of Hydrogen Peroxide in Erythrocytes*. Biochemistry, 2(6), 1420-1428. doi:10.1021/bi00906a038De Koster, J., Hostens, M., Van Eetvelde, M., Hermans, K., Moerman, S., Bogaert, H., … Opsomer, G. (2015). Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science, 98(7), 4580-4592. doi:10.3168/jds.2015-9341De Koster, J., Strieder-Barboza, C., de Souza, J., Lock, A. L., & Contreras, G. A. (2018). Short communication: Effects of body fat mobilization on macrophage infiltration in adipose tissue of early lactation dairy cows. Journal of Dairy Science, 101(8), 7608-7613. doi:10.3168/jds.2017-14318De Koster, J., Van den Broeck, W., Hulpio, L., Claeys, E., Van Eetvelde, M., Hermans, K., … Opsomer, G. (2016). Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period. Journal of Dairy Science, 99(3), 2319-2328. doi:10.3168/jds.2015-10440Depreester, E., De Koster, J., Van Poucke, M., Hostens, M., Van den Broeck, W., Peelman, L., … Opsomer, G. (2018). Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy. Journal of Dairy Science, 101(7), 6542-6555. doi:10.3168/jds.2017-13777Depreester, E., Meyer, E., Demeyere, K., Van Eetvelde, M., Hostens, M., & Opsomer, G. (2017). Flow cytometric assessment of myeloperoxidase in bovine blood neutrophils and monocytes. Journal of Dairy Science, 100(9), 7638-7647. doi:10.3168/jds.2016-12186Dickinson, D. A., & Forman, H. J. (2002). Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64(5-6), 1019-1026. doi:10.1016/s0006-2952(02)01172-3Drevet, J. R. (2006). The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Molecular and Cellular Endocrinology, 250(1-2), 70-79. doi:10.1016/j.mce.2005.12.027Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68-78. doi:10.3168/jds.s0022-0302(89)79081-0Frey, S. K., & Vogel, S. (2011). Vitamin A Metabolism and Adipose Tissue Biology. Nutrients, 3(1), 27-39. doi:10.3390/nu3010027Gessner, D. K., Schlegel, G., Keller, J., Schwarz, F. J., Ringseis, R., & Eder, K. (2013). Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. Journal of Dairy Science, 96(2), 1038-1043. doi:10.3168/jds.2012-5967Graugnard, D. E., Moyes, K. M., Trevisi, E., Khan, M. J., Keisler, D., Drackley, J. K., … Loor, J. J. (2013). Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 96(2), 918-935. doi:10.3168/jds.2012-5676Han, L., Batistel, F., Ma, Y., Alharthi, A. S. M., Parys, C., & Loor, J. J. (2018). Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period. Journal of Dairy Science, 101(9), 8505-8512. doi:10.3168/jds.2017-14206Han, L. Q., Zhou, Z., Ma, Y., Batistel, F., Osorio, J. S., & Loor, J. J. (2018). Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks. Journal of Dairy Science, 101(7), 6511-6522. doi:10.3168/jds.2017-14257Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., … Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology and Medicine, 46(4), 443-453. doi:10.1016/j.freeradbiomed.2008.10.040Holtenius, K., Agenäs, S., Delavaud, C., & Chilliard, Y. (2003). Effects of Feeding Intensity During the Dry Period. 2. Metabolic and Hormonal Responses. Journal of Dairy Science, 86(3), 883-891. doi:10.3168/jds.s0022-0302(03)73671-6Jaakson, H., Karis, P., Ling, K., Ilves-Luht, A., Samarütel, J., Henno, M., … Ots, M. (2018). Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition. Journal of Dairy Science, 101(1), 752-766. doi:10.3168/jds.2017-12877Ji, P., Osorio, J. S., Drackley, J. K., & Loor, J. J. (2012). Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. Journal of Dairy Science, 95(8), 4333-4351. doi:10.3168/jds.2011-5079Kobayashi, H., Matsuda, M., Fukuhara, A., Komuro, R., & Shimomura, I. (2009). Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 296(6), E1326-E1334. doi:10.1152/ajpendo.90921.2008Lacetera, N., Scalia, D., Bernabucci, U., Ronchi, B., Pirazzi, D., & Nardone, A. (2005). Lymphocyte Functions in Overconditioned Cows Around Parturition. Journal of Dairy Science, 88(6), 2010-2016. doi:10.3168/jds.s0022-0302(05)72877-0LeBlanc, S. J., Herdt, T. H., Seymour, W. M., Duffield, T. F., & Leslie, K. E. (2004). Peripartum Serum Vitamin E, Retinol, and Beta-Carotene in Dairy Cattle and Their Associations with Disease. Journal of Dairy Science, 87(3), 609-619. doi:10.3168/jds.s0022-0302(04)73203-8Liang, Y., Batistel, F., Parys, C., & Loor, J. J. (2019). Glutathione metabolism and nuclear factor erythroid 2-like 2 (NFE2L2)-related proteins in adipose tissue are altered by supply of ethyl-cellulose rumen-protected methionine in peripartal Holstein cows. Journal of Dairy Science, 102(6), 5530-5541. doi:10.3168/jds.2018-15687Loor, J. J. (2010). Genomics of metabolic adaptations in the peripartal cow. Animal, 4(7), 1110-1139. doi:10.1017/s1751731110000960Loor, J. J., Bertoni, G., Hosseini, A., Roche, J. R., & Trevisi, E. (2013). Functional welfare – using biochemical and molecular technologies to understand better the welfare state of peripartal dairy cattle. Animal Production Science, 53(9), 931. doi:10.1071/an12344Loor, J. J., Bionaz, M., & Drackley, J. K. (2013). Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annual Review of Animal Biosciences, 1(1), 365-392. doi:10.1146/annurev-animal-031412-103728Lopreiato, V., Minuti, A., Trimboli, F., Britti, D., Morittu, V. M., Cappelli, F. P., … Trevisi, E. (2019). Immunometabolic status and productive performance differences between periparturient Simmental and Holstein dairy cows in response to pegbovigrastim. Journal of Dairy Science, 102(10), 9312-9327. doi:10.3168/jds.2019-16323Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1-2), 42-59. doi:10.1016/j.mam.2008.05.005Ma, Q. (2013). Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53(1), 401-426. doi:10.1146/annurev-pharmtox-011112-140320Ma, Y. F., Wu, Z. H., Gao, M., & Loor, J. J. (2018). Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. Journal of Dairy Science, 101(6), 5329-5344. doi:10.3168/jds.2017-14128Ma, Y. F., Zhao, L., Coleman, D. N., Gao, M., & Loor, J. J. (2019). Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro by activating NFE2L2/HMOX1 pathways. Journal of Dairy Science, 102(2), 1658-1670. doi:10.3168/jds.2018-15047Newman, A. W., Miller, A., Leal Yepes, F. A., Bitsko, E., Nydam, D., & Mann, S. (2019). The effect of the transition period and postpartum body weight loss on macrophage infiltrates in bovine subcutaneous adipose tissue. Journal of Dairy Science, 102(2), 1693-1701. doi:10.3168/jds.2018-15362Onaran, İ., Güven, G., Ozaydin, A., & Ulutin, T. (2001). The influence of GSTM1 null genotype on susceptibility to in vitro oxidative stress. Toxicology, 157(3), 195-205. doi:10.1016/s0300-483x(00)00358-9Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2014). Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. Journal of Dairy Science, 97(12), 7451-7464. doi:10.3168/jds.2014-8680Östh, M., Öst, A., Kjolhede, P., & Strålfors, P. (2014). The Concentration of β-Carotene in Human Adipocytes, but Not the Whole-Body Adipocyte Stores, Is Reduced in Obesity. PLoS ONE, 9(1), e85610. doi:10.1371/journal.pone.0085610Pires, J. A. A., Delavaud, C., Faulconnier, Y., Pomiès, D., & Chilliard, Y. (2013). Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. Journal of Dairy Science, 96(10), 6423-6439. doi:10.3168/jds.2013-6801Ray, P. D., Huang, B.-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24(5), 981-990. doi:10.1016/j.cellsig.2012.01.008Reid, I. M., Roberts, C. J., Treacher, R. J., & Williams, L. A. (1986). Effect of body condition at calving on tissue mobilization, development of fatty liver and blood chemistry of dairy cows. Animal Science, 43(1), 7-15. doi:10.1017/s0003356100018298Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J., & Beever, D. E. (2003). Splanchnic Metabolism of Dairy Cows During the Transition From Late Gestation Through Early Lactation. Journal of Dairy Science, 86(4), 1201-1217. doi:10.3168/jds.s0022-0302(03)73704-7Rocco, S. M., & McNamara, J. P. (2013). Regulation of bovine adipose tissue metabolism during lactation. 7. Metabolism and gene expression as a function of genetic merit and dietary energy intake. Journal of Dairy Science, 96(5), 3108-3119. doi:10.3168/jds.2012-6097Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Berry, D. P. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science, 92(12), 5769-5801. doi:10.3168/jds.2009-2431Roche, J. R., Kay, J. K., Friggens, N. C., Loor, J. J., & Berry, D. P. (2013). Assessing and Managing Body Condition Score for the Prevention of Metabolic Disease in Dairy Cows. Veterinary Clinics of North America: Food Animal Practice, 29(2), 323-336. doi:10.1016/j.cvfa.2013.03.003Schneider, K. S., & Chan, J. Y. (2013). Emerging Role of Nrf2 in Adipocytes and Adipose Biology. Advances in Nutrition, 4(1), 62-66. doi:10.3945/an.112.003103Seo, H.-A., & Lee, I.-K. (2013). The Role of Nrf2: Adipocyte Differentiation, Obesity, and Insulin Resistance. Oxidative Medicine and Cellular Longevity, 2013, 1-7. doi:10.1155/2013/184598Sordillo, L. M., & Raphael, W. (2013). Significance of Metabolic Stress, Lipid Mobilization, and Inflammation on Transition Cow Disorders. Veterinary Clinics of North America: Food Animal Practice, 29(2), 267-278. doi:10.1016/j.cvfa.2013.03.002Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), 70-76. doi:10.1016/j.tvjl.2007.12.015Sun, X., Li, X., Jia, H., Loor, J. J., Bucktrout, R., Xu, Q., … Li, X. (2019). Effect of heat-shock protein B7 on oxidative stress in adipocytes from preruminant calves. Journal of Dairy Science, 102(6), 5673-5685. doi:10.3168/jds.2018-15726Surmi, B. K., & Hasty, A. H. (2010). The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascular Pharmacology, 52(1-2), 27-36. doi:10.1016/j.vph.2009.12.004Suzuki, T., & Yamamoto, M. (2017). Stress-sensing mechanisms and the physiological roles of the Keap1–Nrf2 system during cellular stress. Journal of Biological Chemistry, 292(41), 16817-16824. doi:10.1074/jbc.r117.800169Tourniaire, F., Gouranton, E., von Lintig, J., Keijer, J., Luisa Bonet, M., Amengual, J., … Landrier, J.-F. (2009). β-Carotene conversion products and their effects on adipose tissue. Genes & Nutrition, 4(3), 179-187. doi:10.1007/s12263-009-0128-3Treacher, R. J., Reid, I. M., & Roberts, C. J. (1986). Effect of body condition at calving on the health and performance of dairy cows. Animal Science, 43(1), 1-6. doi:10.1017/s0003356100018286Trevisi, E., Bertoni, G., Lombardelli, R., & Minuti, A. (2013). Relation of inflammation and liver function with the plasma cortisol response to adrenocorticotropin in early lactating dairy cows. Journal of Dairy Science, 96(9), 5712-5722. doi:10.3168/jds.2012-6375Vailati-Riboni, M., Farina, G., Batistel, F., Heiser, A., Mitchell, M. D., Crookenden, M. A., … Loor, J. J. (2017). Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. Journal of Dairy Science, 100(3), 2334-2350. doi:10.3168/jds.2016-11790Vailati-Riboni, M., Kanwal, M., Bulgari, O., Meier, S., Priest, N. V., Burke, C. R., … Loor, J. J. (2016). Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. Journal of Dairy Science, 99(1), 758-770. doi:10.3168/jds.2015-10046Vailati Riboni, M., Meier, S., Priest, N. V., Burke, C. R., Kay, J. K., McDougall, S., … Loor, J. J. (2015). Adipose and liver gene expression profiles in response to treatment with a nonsteroidal antiinflammatory drug after calving in grazing dairy cows. Journal of Dairy Science, 98(5), 3079-3085. doi:10.3168/jds.2014-8579Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84. doi:10.1016/j.biocel.2006.07.001Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134(3), 489-492. doi:10.1093/jn/134.3.489Xu, Q., Jia, H., Ma, L., Liu, G., Xu, C., Li, Y., … Li, X. (2019). All-trans retinoic acid inhibits lipopolysaccharide-induced inflammatory responses in bovine adipocytes via TGFβ1/Smad3 signaling pathway. BMC Veterinary Research, 15(1). doi:10.1186/s12917-019-1791-2Zachu

    Hepatic and subcutaneous adipose lipid metabolism genes modulation by dietary fish oil and stearate in transition goats

    Get PDF
    The objective of the experiment was to understand the interaction between saturated or unsaturated fatty acids and genes involved in lipid metabolism in liver and subcutaneous adipose tissue. With this purpose, further gene expression assays were performed on obtained adipose and liver samples from a previous in vivo study where expression levels of ADIPOQ, LPIN1, LPL, PPARG, SREBF1 and THRSP were already determined. The study consisted on the administration of either a no fat-supplemented, or a stearic acid or fish oil supplemented diets to dairy goats from the last week of gestation until 21 days after kidding. Fat-supplied goats received 30g/head/d extra fatty acids during the dry period and 50g/head/d during lactation. Liver and subcutaneous adipose tissue samples were harvested at day 7, 7 and 21 relative to kidding and immediately snap frozen in liquid nitrogen. At the present moment, quantitative real-time RT-PCR of ACAT1, MSMO1, CPT1, IL6 on liver and ACACA, LEP, LPL, FASN, IL6 and PLIN2 on adipose tissue are running. Data obtained will be analysed using the MIXED procedure of SAS and results may increase the knowledge on the mechanism of action of saturated or unsaturated dietary fatty acid sources in the fatty acid metabolism changes during transition in dairy goats

    Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies

    Full text link
    [EN] The main objective of this study was to develop a dynamic energy balance model for dairy goats to describe and quantify energy partitioning between energy used for work (milk) and that lost to the environment. Increasing worldwide concerns regarding livestock contribution to global warming underscore the importance of improving energy efficiency utilization in dairy goats by reducing energy losses in feces, urine and methane (CH4). A dynamic model of CH(4)emissions from experimental energy balance data in goats is proposed and parameterized (n= 48 individual animal observations). The model includes DM intake, NDF and lipid content of the diet as explanatory variables for CH(4)emissions. An additional data set (n= 122 individual animals) from eight energy balance experiments was used to evaluate the model. The model adequately (root MS prediction error,RMSPE) represented energy in milk (E-milk;RMSPE = 5.6%), heat production (HP;RMSPE = 4.3%) and CH(4)emissions (E-CH4; RMSPE = 11.9%). Residual analysis indicated that most of the prediction errors were due to unexplained variations with small mean and slope bias. Some mean bias was detected for HP (1.12%) and E-CH4(1.27%) but was around zero for E-milk (0.14%). The slope bias was zero for HP (0.01%) and close to zero for E-milk (0.10%) and E-CH4(0.22%). Random bias was >98% for E-CH4, HP and E-milk, indicating non-systematic errors and that mechanisms in the model are properly represented. As predicted energy increased, the model tended to underpredict E-CH(4)and E-milk. The model is a first step toward a mechanistic description of nutrient use by goats and is useful as a research tool for investigating energy partitioning during lactation. The model described in this study could be used as a tool for making enteric CH(4)emission inventories for goats.This study was supported by LOW CARBON FEED Project reference LIFE2016/CCM/ES/000088.Fernández Martínez, CJ.; Hernando, I.; Moreno-Latorre, E.; Loor, J. (2020). Development of a dynamic energy-partitioning model for enteric methane emissions and milk production in goats using energy balance data from indirect calorimetry studies. Animal. 14:s382-s395. https://doi.org/10.1017/S1751731120001470Ss382s39514Agricultural and Food Research Council (AFRC) 1997. The nutrition of goats. Nutrition Abstract and Reviews (Series B) 67, 776–861.Aguilera, J. F., Prieto, C., & FonollÁ, J. (1990). Protein and energy metabolism of lactating Granadina goats. British Journal of Nutrition, 63(2), 165-175. doi:10.1079/bjn19900104Bannink, A., France, J., Lopez, S., Gerrits, W. J. J., Kebreab, E., Tamminga, S., & Dijkstra, J. (2008). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology, 143(1-4), 3-26. doi:10.1016/j.anifeedsci.2007.05.002Bava, L., Rapetti, L., Crovetto, G. M., Tamburini, A., Sandrucci, A., Galassi, G., & Succi, G. (2001). Effects of a Nonforage Diet on Milk Production, Energy, and Nitrogen Metabolism in Dairy Goats throughout Lactation. Journal of Dairy Science, 84(11), 2450-2459. doi:10.3168/jds.s0022-0302(01)74695-4Beauchemin K, McAllister T and McGinn S 2009. Dietary mitigation of enteric CH4 from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4, 035.Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1), 511-522. doi:10.1079/bjn19650046Brouwer E 1965. Report of sub-committee on constants and factors. In Proceeding of the 3th EAAP Symposium on Energy Metabolism (ed. KL Blaxter ), pp. 441–443. Academic Press, London, UK.Criscioni, P., Marti, J. V., Pérez-Baena, I., Palomares, J. L., Larsen, T., & Fernández, C. (2016). Replacement of alfalfa hay ( Medicago sativa ) with maralfalfa hay ( Pennisetum sp.) in diets of lactating dairy goats. Animal Feed Science and Technology, 219, 1-12. doi:10.1016/j.anifeedsci.2016.05.020Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K., & France, J. (2007). Prediction of Methane Production from Dairy and Beef Cattle. Journal of Dairy Science, 90(7), 3456-3466. doi:10.3168/jds.2006-675Statistical data base Food and Agriculture Organization (FAOSTAT) 2018. FAO Statistical data base Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved on 25 June 2018 from http://faostat.fao.org/FERNÁNDEZ, C., LÓPEZ, M. C., & LACHICA, M. (2015). Low-cost mobile open-circuit hood system for measuring gas exchange in small ruminants: from manual to automatic recording. The Journal of Agricultural Science, 153(7), 1302-1309. doi:10.1017/s0021859615000416Fernández, C., Martí, J. V., Pérez-Baena, I., Palomares, J. L., Ibáñez, C., & Segarra, J. V. (2018). Effect of lemon leaves on energy and C–N balances, methane emission, and milk performance in Murciano-Granadina dairy goats. Journal of Animal Science, 96(4), 1508-1518. doi:10.1093/jas/sky028Fernández, C. (2018). Dynamic model development of enteric methane emission from goats based on energy balance measured in indirect open circuit respiration calorimeter. Global Ecology and Conservation, 15, e00439. doi:10.1016/j.gecco.2018.e00439Fernández, C., Pérez-Baena, I., Marti, J. V., Palomares, J. L., Jorro-Ripoll, J., & Segarra, J. V. (2019). Use of orange leaves as a replacement for alfalfa in energy and nitrogen partitioning, methane emissions and milk performance of murciano-granadina goats. Animal Feed Science and Technology, 247, 103-111. doi:10.1016/j.anifeedsci.2018.11.008Fernández, C., Gomis-Tena, J., Hernández, A., & Saiz, J. (2019). An Open-Circuit Indirect Calorimetry Head Hood System for Measuring Methane Emission and Energy Metabolism in Small Ruminants. Animals, 9(6), 380. doi:10.3390/ani9060380Grainger, C., & Beauchemin, K. A. (2011). Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology, 166-167, 308-320. doi:10.1016/j.anifeedsci.2011.04.021Howarth, R. (2015). Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy. Energy and Emission Control Technologies, 45. doi:10.2147/eect.s61539Hristov, A. N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A. R., … Yu, Z. (2018). Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 101(7), 6655-6674. doi:10.3168/jds.2017-13536Ibáñez, C., López, M. C., Criscioni, P., & Fernández, C. (2015). Effect of replacing dietary corn with beet pulp on energy partitioning, substrate oxidation and methane production in lactating dairy goats. Animal Production Science, 55(1), 56. doi:10.1071/an13119Institute Nationale Recherche Agronomique (INRA) 2017. Feeding system for ruminants. Wageningen Academic Publishers, Wageningen, the Netherlands.Jørgensen, S. E. (2015). New method to calculate the work energy of information and organisms. Ecological Modelling, 295, 18-20. doi:10.1016/j.ecolmodel.2014.09.001Kebreab, E., Johnson, K. A., Archibeque, S. L., Pape, D., & Wirth, T. (2008). Model for estimating enteric methane emissions from United States dairy and feedlot cattle1. Journal of Animal Science, 86(10), 2738-2748. doi:10.2527/jas.2008-0960Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. doi:10.3168/jds.2013-7234Lin, L. I.-K. (1989). A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45(1), 255. doi:10.2307/2532051López, M. C., Estellés, F., Moya, V. J., & Fernández, C. (2014). Use of dry citrus pulp or soybean hulls as a replacement for corn grain in energy and nitrogen partitioning, methane emissions, and milk performance in lactating Murciano-Granadina goats. Journal of Dairy Science, 97(12), 7821-7832. doi:10.3168/jds.2014-8424López, M. C., & Fernández, C. (2013). Energy partitioning and substrate oxidation by Murciano-Granadina goats during mid lactation fed soy hulls and corn gluten feed blend as a replacement for corn grain. Journal of Dairy Science, 96(7), 4542-4552. doi:10.3168/jds.2012-6473Martí JV, Pérez-Baena I and Fernández C 2012. Replacement of barley grain with lemon pulp on energy partitioning in lactating goats. Unpublished.Merino, P., Ramirez-Fanlo, E., Arriaga, H., del Hierro, O., Artetxe, A., & Viguria, M. (2011). Regional inventory of methane and nitrous oxide emission from ruminant livestock in the Basque Country. Animal Feed Science and Technology, 166-167, 628-640. doi:10.1016/j.anifeedsci.2011.04.081Mills, J. A. N., Kebreab, E., Yates, C. M., Crompton, L. A., Cammell, S. B., Dhanoa, M. S., … France, J. (2003). Alternative approaches to predicting methane emissions from dairy cows1. Journal of Animal Science, 81(12), 3141-3150. doi:10.2527/2003.81123141xMoorby, J. M., Fleming, H. R., Theobald, V. J., & Fraser, M. D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports, 5(1). doi:10.1038/srep17915Niu, M., Kebreab, E., Hristov, A. N., Oh, J., Arndt, C., Bannink, A., … Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24(8), 3368-3389. doi:10.1111/gcb.14094Patra, A. K., & Lalhriatpuii, M. (2016). Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agriculture, Ecosystems & Environment, 215, 89-99. doi:10.1016/j.agee.2015.09.018Pérez-Baena I, Martí JV and Fernández C 2012. Effect of replace barley grain with beet pulp in lactating goats diet; energy balance and milk performance. Unpublished.R Core Team 2016. R: A language and environment for statistical computing. Version 1.1.447. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/Ramin, M., & Huhtanen, P. (2013). Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science, 96(4), 2476-2493. doi:10.3168/jds.2012-6095Tovar-Luna, I., Puchala, R., Sahlu, T., Freetly, H. C., & Goetsch, A. L. (2010). Effects of stage of lactation and dietary concentrate level on energy utilization by Alpine dairy goats. Journal of Dairy Science, 93(10), 4818-4828. doi:10.3168/jds.2010-3315United Nations Framework Convention on Climate Change 2015. UN Climate Change Newsroom. Historic Paris agreement on climate change. 195 nations set path to keep temperature rise well below 2 degrees Celsius. Retrieved on 1 July 2018 from http://newsroom.unfccc.int/unfccc-newsroom/finale-cop21/Yan, T., Porter, M. G., & Mayne, C. S. (2009). Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal, 3(10), 1455-1462. doi:10.1017/s175173110900473
    corecore