363 research outputs found

    Deep XMM-Newton Spectroscopic and Timing Observations of the Isolated Radio Millisecond Pulsar PSR J0030+0451

    Full text link
    We present deep XMM-Newton EPIC spectroscopic and timing X-ray observations of the nearby solitary radio millisecond pulsar, PSR J0030+0451. Its emission spectrum in the 0.1-10 keV range is found to be remarkably similar to that of the nearest and best studied millisecond pulsar, PSR J0437-4715, being well described by a predominantly thermal two-temperature model plus a faint hard tail evident above ~2 keV. The pulsed emission in the 0.3-2 keV band is characterized by two broad pulses with pulsed fraction ~60-70%, consistent with a mostly thermal origin of the X-rays only if the surface polar cap radiation is from a light-element atmosphere. Modeling of the thermal pulses permits us to place constraints on the neutron star radius of R>10.7 (95% confidence) and R>10.4 km (at 99.9% confidence) for M=1.4 M_sun.Comment: 8 pages, 7 figures; accepted for publication in The Astrophysical Journa

    Quantum effects in gravitational wave signals from cuspy superstrings

    Get PDF
    We study the gravitational emission, in Superstring Theory, from fundamental strings exhibiting cusps. The classical computation of the gravitational radiation signal from cuspy strings features strong bursts in the special null directions associated to the cusps. We perform a quantum computation of the gravitational radiation signal from a cuspy string, as measured in a gravitational wave detector using matched filtering and located in the special null direction associated to the cusp. We study the quantum statistics (expectation value and variance) of the measured filtered signal and find that it is very sharply peaked around the classical prediction. Ultimately, this result follows from the fact that the detector is a low-pass filter which is blind to the violent high-frequency quantum fluctuations of both the string worldsheet, and the incoming gravitational field.Comment: 16 pages, no figur

    Defoliation of common ragweed by Ophraella communa beetle does not affect pollen allergenicity in controlled conditions

    Get PDF
    Ragweed allergy is one of the primary causes of seasonal allergies in Europe and its prevalence is expected to rise. The leaf beetle Ophraella communa, recently and accidentally established in N-Italy and S-Switzerland, represents a promising approach to control ragweed, but negative side effects should be excluded before its use. Since biotic and abiotic stresses are known to influence the allergenicity of pollen, we set out to assess the effect of sub-lethal defoliation by O. communa on the quantity and quality of ragweed pollen. Seventeen sister pairs (including six clones) of ragweed plants were grown in controlled conditions. One of each pair was exposed to O. communa as soon as the plant started to produce reproductive structures. After 10 weeks of exposure, plant traits were measured as a proxy for pollen quantity. Pollen quality was assessed by measuring its viability and allergenicity. Generally, plants produced very few male flowers and little amount of pollen. Damage by the beetle was severe with most of the leaf tissue removed, but no treatment effect was found on any of the quantitative and qualitative traits assessed. In conclusion, O. communa did not increase the amount or allergenicity of ragweed pollen grains in our experimental conditions

    Low-frequency gravitational radiation from coalescing massive black hole binaries in hierarchical cosmologies

    Full text link
    We compute the expected gravitational wave signal from coalescing massive black hole (MBH) binaries at the center of galaxies in a hierarchical structure formation scenario in which seed holes of intermediate mass form far up in the dark halo merger tree. The merger history of DM halos and MBHs is followed from z=20 to the present in a LCDM cosmology. MBHs get incorporated through halo mergers into larger and larger structures, sink to the center owing to dynamical friction against the DM background, accrete cold material in the merger remnant, and form MBH binary systems. Stellar dynamical interactions cause the hardening of the binary at large separations, while gravitational wave emission takes over at small radii and leads to the final coalescence of the pair. The integrated emission from inspiraling MBH binaries results in a gravitational wave background (GWB). The characteristic strain spectrum has the standard h_c(f)\propto f^{-2/3} behavior only in the range 1E-9<f<1E-6 Hz. At lower frequencies the orbital decay of MBH binaries is driven by the ejection of background stars, and h_c(f) \propto f. At higher frequencies, f>1E-6 Hz, the strain amplitude is shaped by the convolution of last stable circular orbit emission. We discuss the observability of inspiraling MBH binaries by the planned LISA. Over a 3-year observing period LISA should resolve this GWB into discrete sources, detecting ~60 (~250) individual events above a S/N=5 (S/N=1) confidence level. (Abridged)Comment: 11 pages, 8 figues. Revised version accepted to be published in ApJ Discussion on number counts corrected and expande

    Time to cut: Population models reveal how to mow invasive common ragweed cost-effectively

    Get PDF
    Roadsides are an important habitat for invasive common ragweed, Ambrosia artemisiifolia L., by facilitating seed dispersal. Reducing the size of roadside populations is therefore essential for confining this highly allergenic species. Here, we aim to determine the cost-effectiveness of mowing regimes varying in frequency and timing, by analysing population-level effects and underlying demographic processes. We constructed population models of A. artemisiifolia parameterised by demographic data for four unmanaged reference populations across Europe in two years. We integrated the effects of four experimental mowing regimes along Austrian road sides on plant performance traits of five years and experimental data on seed viability after cutting. All four experimental regimes reduced the projected intrinsic population growth rates (r) compared to the unmanaged controls by reducing plant height and seed viability, thereby counteracting increased size-dependent fecundity. The prevailing 2-cut regime in Austria (cutting during vegetative growth, here in June and just before seed ripening, here in September) performed least well and the reduction in r was mainly due to reduced seed viability after the second cut. The efficacy of the two best experimental regimes (alternative schemes for 2 or 3 cuts) was mainly due to cutting just before female flowering (here in August) by decreasing final adult plant height dramatically and thereby reducing seed numbers. Patterns were consistent across reference populations and years. Whether regimes reduced r below replacement level, however, varied per population, year and the survival rate of the seeds in the soil bank. Our model allowed projecting effects of five theoretical mowing regimes with untested combinations of cuts on r. By plotting r-cost relationships for all regimes, we identified the most cost-effective schemes for each cutting frequency (1-3 cuts). They all included the cut just before female flowering, highlighting the importance of cutting at this moment (here in August). Our work features i) the suitability of a modelling approach for the demography of an annual species with a seed bank, ii) the importance of seed viability in assessing mowing effects, iii) the use of population models in designing cost-effective mowing regimes

    New Pulsars from an Arecibo Drift Scan Search

    Full text link
    We report the discovery of pulsars J0030+0451, J0711+0931, and J1313+0931 that were found in a search of 470 square degrees at 430 MHz using the 305m Arecibo telescope. The search has an estimated sensitivity for long period, low dispersion measure, low zenith angle, and high Galactic latitude pulsars of ~1 mJy, comparable to previous Arecibo searches. Spin and astrometric parameters for the three pulsars are presented along with polarimetry at 430 MHz. PSR J0030+0451, a nearby pulsar with a period of 4.8 ms, belongs to the less common category of isolated millisecond pulsars. We have measured significant polarization in PSR J0030+0451 over more than 50% of the period, and use these data for a detailed discussion of its magnetospheric geometry. Scintillation observations of PSR J0030+0451 provide an estimate of the plasma turbulence level along the line of sight through the local interstellar medium.Comment: 21 pages, 4 figures, Accepted for Publication in Ap

    A Bayesian parameter estimation approach to pulsar time-of-arrival analysis

    Full text link
    The increasing sensitivities of pulsar timing arrays to ultra-low frequency (nHz) gravitational waves promises to achieve direct gravitational wave detection within the next 5-10 years. While there are many parallel efforts being made in the improvement of telescope sensitivity, the detection of stable millisecond pulsars and the improvement of the timing software, there are reasons to believe that the methods used to accurately determine the time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More specifically, the determination of the uncertainties on these TOAs, which strongly affect the ability to detect GWs through pulsar timing, may be unreliable. We propose two Bayesian methods for the generation of pulsar TOAs starting from pulsar "search-mode" data and pre-folded data. These methods are applied to simulated toy-model examples and in this initial work we focus on the issue of uncertainties in the folding period. The final results of our analysis are expressed in the form of posterior probability distributions on the signal parameters (including the TOA) from a single observation.Comment: 16 pages, 4 figure
    corecore